Deutsch

Wearable Breakthrough! A rubber like deformable energy storage device using laser precision manufacturing

777
2024-04-26 15:50:05
Übersetzung anzeigen

Recently, foreign researchers have made remarkable breakthroughs in the field of flexible energy storage devices, successfully developing a small energy storage device that can stretch, twist, fold, and wrinkle freely. This significant achievement has been published in the journal npj Flexible Electronics.

With the booming development of wearable technology, the demand for energy storage solutions that can adapt to the flexibility and stretchability of soft electronic devices is becoming increasingly urgent. Micro supercapacitors (MSCs) have become a highly promising deformable energy storage material due to their high power density, fast charging, and long cycle life.

However, the brittleness of traditional electrode materials such as gold (Au) poses a significant challenge in manufacturing cross electrode modes that can maintain stable performance through repeated stretching and twisting. At the same time, although eutectic gallium indium liquid metal (EGaIn) has attracted attention for its high conductivity and excellent deformability, its extremely high surface tension makes fine patterning operations exceptionally difficult.

Faced with these challenges, the research team demonstrated extraordinary innovative spirit. They cleverly utilized laser technology to accurately depict the fine patterns of EGaIn and graphene (as active materials) on stretchable polystyrene block copolymer (SEBS) substrates.

During the laser ablation process, the underlying SEBS substrate is intact and undamaged, ensuring the flexibility and durability of MSC devices. Excitingly, the surface capacitance of this new MSC can still maintain its original value after undergoing up to 1000 stretching cycles. What is even more remarkable is that these prepared MSCs can maintain stable operation under various mechanical deformations, such as stretching, folding, twisting, and wrinkling.

The research team brought together several outstanding scientists, including Professor Jin Kon Kim and Dr. Keon Woo Kim from the Department of Chemical Engineering at POSTECH, as well as Dr. Yang Chanwoo and Researcher Seong Ju Park from the Korea Institute of Industrial Technology (KITECH). Their joint efforts and wisdom have injected new vitality into the development of flexible energy storage.

Professor Jin Kon Kim is confident in this achievement, stating, "The application of laser patterned liquid metal electrodes marks an important step in the development of truly deformable energy storage solutions. With the continuous advancement of wearable technology, such innovation will play a crucial role in ensuring that our devices can adapt to dynamic lifestyles. We look forward to this technology bringing more convenient and efficient energy storage experiences to future wearable devices."

Source: OFweek

Ähnliche Empfehlungen
  • Optical properties of Xinggory Cy3.5 amine/NH2 labeling experiment

    The optical properties of the Cy3.5 amine labeling experiment are an important reason for its application in biomarkers and fluorescence imaging. Cy3.5 is a fluorescent dye belonging to the Cyanine dye family, with high molar extinction coefficient and quantum yield, making it excellent in trace analysis and fluorescence imaging.In the Cy3.5 amine labeling experiment, the dye covalently binds to s...

    2024-03-29
    Übersetzung anzeigen
  • Ireland's first biological Brillouin microscope at Trinity College Dublin

    A project at Trinity College Dublin is now hosting Ireland's first BioBrillouin microscope instrument, applying Brillouin spectroscopy to life sciences and medicine.This should in particular enhance the College's research into cellular and tissue mechanics for the study of inflammation, cancer, and developmental biology.Brillouin microscopy offers a route to optical investigation of a biological s...

    07-14
    Übersetzung anzeigen
  • Visual platforms bring new perspectives to optical research

    The advanced testing platform of Liquid Instruments is now available for Apple Vision Pro, providing optical researchers with the first interactive 3D testing system. By integrating the Moku system with camera based visual devices, the efficiency of the laboratory has been significantly improved.The Moku platform utilizes the processing power of field programmable gate arrays (FPGAs) to provide a ...

    2024-05-23
    Übersetzung anzeigen
  • The LANL laboratory in the United States uses quantum light emitters to generate single photon light sources

    Recently, the Los Alamos National Laboratory (LANL) in the United States has developed a method for quantum light emitters, which stacks two different atomic thin materials together to achieve a light source that generates circularly polarized single photon streams. These light sources can also be used for various quantum information and communication applications.According to Han Htoon, a researc...

    2023-09-01
    Übersetzung anzeigen
  • Laser manufacturer DIT signs KRW 20.52 billion agreement

    Recently, DIT, a well-known semiconductor and display equipment manufacturer in South Korea, announced that the company has signed an agreement worth 20.52 billion Korean won to supply wafer processing equipment to SK Hynix. After the announcement, DIT's stock price rose for five consecutive days, entering the 16000 Korean won range. Then on the 22nd, it rose 2580 Korean won from the previous day'...

    02-15
    Übersetzung anzeigen