Deutsch

This innovation will significantly improve the sensitivity of gravitational wave detectors

218
2024-04-17 16:23:40
Übersetzung anzeigen

In 2017, the detection of gravitational waves generated by the merger of binary neutron stars marked a significant breakthrough in physics. These waves reveal important information about the universe, from the origin of short gamma ray bursts to the formation of heavy elements.

However, capturing gravitational waves from the merged residue remains a challenge as these waves avoid the detection range of the current detector. However, they can illuminate the internal structure of neutron stars.

The solution may lie in amplifying signals through optical springs and simulating spring behavior using the radiation pressure of light. The Tokyo Institute of Technology's Japan research group, led by associate professors Kentaro Somiya and Dr. Sotatsu Otabe, has proposed an innovation: Kerr effect enhanced optical springs.

In order to make the system more sensitive without requiring more energy, researchers used special techniques in optical equipment. They introduced a material called Kerr medium. This material has a unique characteristic of changing the refractive index of light.

Due to this feature, the device can act as a harder optical spring, thereby enhancing its ability to respond to very subtle changes (such as those caused by gravitational waves) without consuming more energy. Tests have shown that this method increases the hardness of lightweight springs by 1.6 times, enabling the device to detect changes at higher frequencies (from 53 Hz to 67 Hz).

This progress paves the way for the next generation of gravitational wave detectors, which can detect elusive waves to date and provide us with an additional key to understanding the composition of the universe. The proposed design is easy to implement and introduces adjustable parameters into the optomechanical system.

Source: Laser Net

Ähnliche Empfehlungen
  • Changguang Huaxin's revenue in the first half of the year was 142 million yuan, and its net profit decreased by 117.97% year-on-year

    On August 30th, Changguang Huaxin released its results for the first half of 2023. In the first half of this year, the company achieved a revenue of 142 million yuan, a year-on-year decrease of 43.23%; Net profit attributable to shareholders of the listed company -10.6374 million yuan, a year-on-year decrease of 117.97%.Due to macroeconomic factors such as a slowdown in economic growth, market con...

    2023-08-31
    Übersetzung anzeigen
  • The University of California has developed a pioneering chip that can simultaneously carry lasers and photonic waveguides

    A team of computer and electrical engineers at UC Santa Barbara, in collaboration with several colleagues at Caltech and another colleague at Anello Photonics, has developed a first-of-its-kind chip that can carry both laser and photonic waveguides. In a paper published in the journal Nature, the team describes how they made the chip and how it worked during testing.With the advent of integrated c...

    2023-08-10
    Übersetzung anzeigen
  • Composite two-dimensional materials for fiber lasers demonstrate the prospects of ultra fast optical applications

    The formation of dissipative solitons is influenced by various factors, such as spectral filtering effect and Kerr nonlinearity effect. This interaction leads to the possibility of mode locking on a large range of parameters, generating pulses with completely different types and evolution from conventional physical laws and optical properties, tolerating higher nonlinear effects, and effectively a...

    2023-09-21
    Übersetzung anzeigen
  • German optoelectronic component manufacturer collaborates heavily to develop VCSELs lasers

    This collaboration deeply integrates the unique expertise and cutting-edge technological achievements of both companies in the field of optoelectronics, aiming to broaden the boundaries of optoelectronics innovation.EPIGAP OSA Photonics GmbH, as a leader in the research and manufacturing of optoelectronic components in Germany, is deeply rooted in multiple fields such as medical technology, indust...

    2024-08-06
    Übersetzung anzeigen
  • Lidar: Entering the Golden Age of Fission Growth

    With the global transition of autonomous driving from L2 to L3+, in the battle between LiDAR and pure visual perception routes, LiDAR is redefining the industry landscape at an astonishing pace of technological evolution and quietly building a new industrial ecosystem in the era of intelligent travel. Before the end-to-end model of autonomous driving became mainstream, there were many discussion...

    03-21
    Übersetzung anzeigen