Deutsch

The UK government plans £ 10.5 million to support laser wire feeding

423
2025-06-23 10:46:00
Übersetzung anzeigen

On the first day of the 2025 Paris Air Show, the UK government announced a £ 250 million investment to support sustainable aerospace programs, with £ 48.5 million earmarked for funding additive manufacturing projects led by Airbus and GKN Aerospace. Among them, £ 10.5 million will be injected into the GKN Integrated System Level Aerospace Structure Assembly (ISLAA) program, with the aim of utilizing Laser Wire Feed Additive Manufacturing (WLAM) technology to advance large-scale aerospace production.

It is reported that GKN Aviation will use funds to promote the application of laser wire feeding additive manufacturing technology in aircraft structural integration, and simultaneously announce a new cooperation with electric vertical takeoff and landing (eVTOL) manufacturer Archer Aviation to provide key fuselage components and low-voltage electrical interconnection systems for its Midnight air taxi.


Parts printed using GKN's laser wire feeding additive technology


Application of GKN's WLAM technology in the manufacturing of large aerospace components
Laser wire feeding additive manufacturing technology (WLAM) is a 3D printing process that uses laser melting of metal wire materials layer by layer to form. It has advantages such as high material utilization, fast deposition rate, no dust pollution, support for multiple materials, and large-scale manufacturing. For many years, GKN Aerospace has been at the forefront of the application of laser wire feeding additive manufacturing technology, committed to applying this technology to the manufacturing of large aerospace components.

1. Announce the delivery of the 200th additive manufactured fan housing installation ring
GKN Aviation announced the delivery of the 200th additive manufactured fan housing mounting ring. GKN began using laser wire feeding additive technology to produce large fan casing installation rings in 2024, and completed the production of its 100th piece in November of the same year. The acceleration of production speed reflects the operational efficiency of laser wire feeding additive manufacturing, which can meet the demanding requirements of modern aviation and produce lightweight, sturdy, and highly optimized components.

 



2. GKN uses laser wire feeding additive technology to assist aerospace manufacturing
GKN Airlines uses laser wire feeding additive technology to manufacture cutting-edge components, which have been applied to the world's leading aviation engines and have begun mass production, achieving a 40% reduction in component manufacturing emissions, a 40% reduction in raw material losses, an 80% reduction in delivery cycles, and promoting global capacity upgrades.

3. GKN collaborates with renowned aircraft manufacturers to produce large titanium alloy aviation structural components
GKN Airlines has partnered with aircraft manufacturer Northrop Grumman to use laser wire feeding additive manufacturing technology to manufacture a titanium metal aerospace structural component with a size of approximately 2.5 meters using about 45 kilograms of titanium. It is said to be the largest additive manufacturing aerospace structural component produced by GKN Aerospace.

Source: Yangtze River Delta G60 Laser Alliance

Ähnliche Empfehlungen
  • Ultra fast plasma for all optical switches and pulse lasers

    Plasmology plays a crucial role in advancing nanophotonics, as plasma structures exhibit a wide range of physical properties that benefit from local and enhanced light matter interactions. These characteristics are utilized in many applications, such as surface enhanced Raman scattering spectroscopy, sensors, and nanolasers.In addition to these applications, the ultrafast optical response of plasm...

    2024-03-26
    Übersetzung anzeigen
  • Dr. Mark Sobey, President of Coherent Lasers, has officially retired

    On September 1 local time, Coherent, an American laser system solutions provider, announced that Dr. Mark Sobey, president of its laser division, has officially retired from the company.In July 2022, II-VI and Coherent completed the merger and were reorganized into three business units: Lasers, Materials and Networking. Since this point, Dr. Sobey has served as President of Coherent's Laser divisi...

    2023-09-05
    Übersetzung anzeigen
  • An optical display technology based on mechanical optical mechanism

    The optical properties of afterglow luminescent particles in mechanical quenching and mechanical luminescence have aroused great interest in various technological applications. However, for specific photon applications, clearer explanations are needed for these unusual events.Recently, scientists from Pohang University of Science and Technology have designed an optical display technology with ALP ...

    2024-03-12
    Übersetzung anzeigen
  • Japanese and Australian teams use lasers to search for space debris the size of peanuts

    It is reported that Japanese startup EX Fusion will soon reach an agreement with Australian space contractor Electric Optical Systems to conduct on-site testing of technology for tracking small space debris orbiting Earth.Image source: LeolabsEX Fusion, headquartered in Osaka, specializes in the laser business with the goal of achieving commercial laser fusion reactors. So far, nuclear fusion rese...

    2023-10-10
    Übersetzung anzeigen
  • The LANL laboratory in the United States uses quantum light emitters to generate single photon light sources

    Recently, the Los Alamos National Laboratory (LANL) in the United States has developed a method for quantum light emitters, which stacks two different atomic thin materials together to achieve a light source that generates circularly polarized single photon streams. These light sources can also be used for various quantum information and communication applications.According to Han Htoon, a researc...

    2023-09-01
    Übersetzung anzeigen