Deutsch

The application of laser technology in the automated production line of energy storage/power battery PACK

711
2023-12-18 15:42:21
Übersetzung anzeigen

Lithium batteries are highly favored in the fields of 3C digital and new energy vehicles due to their high energy density, environmental characteristics, and fast charging and discharging. Welding, as a crucial link in the manufacturing process of lithium batteries, has a decisive impact on battery performance and quality. Laser welding technology is increasingly playing an important role in the lithium battery industry due to its advantages of high precision, non-contact, and high efficiency.

Laser welding uses laser focused high-power density beams to irradiate the surface of workpieces, and through thermal conduction, the material dissolves to form a specific solution pool. It is a rapidly developing new welding method. Its characteristics of small heat affected zone, high-precision positioning, high efficiency, and automated production make it play a unique advantage in the welding of lithium battery cells and modules, material cutting, and marking.

Unmanned transmission: The transmission of battery cells to modules is completed by the material transmission system, with flexible expansion of workstations to adapt to process adjustments, achieving small batch and multi variety production.

Multi axis linkage: Adapt to modules of different sizes to ensure the synchronization of the entire production line, especially in the welding process to achieve adaptability of modules of different sizes.

Accurate positioning: Using a visual positioning system to achieve precise positioning of welding surface cleaning, module marking, and manifold welding processes, improving processing quality.

Intelligent monitoring: The MES system enables rapid querying, analysis, and processing of production parameters, data, and other information, ensuring full control from cell loading to module unloading.

Laser welding technology has broad application prospects in welding between various materials, and can be applied to various metal materials such as steel, aluminum, copper, nickel, etc. in lithium battery structures, meeting the high requirements of battery manufacturing.

Source: Laser Net

Ähnliche Empfehlungen
  • Scientists build high-power cladding-pumped Raman fiber laser in 1.2 μm band

    Laser sources operating in the 1.2 μm band have some unique applications in photodynamic therapy, biomedical diagnostics, and oxygen sensing. In addition, they can be used as pump sources for mid-infrared optical parameter generation and visible light generation through frequency doubling.Laser generation in the 1.2 μm band has been achieved by different solid-state lasers, including semicon...

    2024-01-31
    Übersetzung anzeigen
  • Patterned waveguide enhanced signal amplification within perovskite nanosheets

    Researchers at Busan National University, led by Kwangseuk Kyhm, Professor of Ultra Fast Quantum Optoelectronics from the Department of Optics and Mechatronics, are enhancing signal amplification inside cesium bromide lead perovskite nanosheets through patterned waveguides.Perovskite is a highly attractive material in solar cell applications, but its nanostructure is now being explored as a new la...

    2024-01-10
    Übersetzung anzeigen
  • The Innovation Road of Laser Welding Automation Production Line for New Energy Vehicle Motor stators

    With the increasing global attention to environmental protection and sustainability, new energy vehicles have become an important trend in the automotive industry. In this context, the production method of the core component of new energy vehicles - the motor stator - has also undergone profound changes. Welding, as a key manufacturing process, has brought disruptive innovation to the manufacturin...

    2024-02-28
    Übersetzung anzeigen
  • Progress in Research on Transparent Ceramics for 3D Printing Laser Illumination at Shanghai Institute of Optics and Mechanics

    It is reported that the Research Center for Infrared Optical Materials of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made progress in the research of additive manufacturing (3D printing) transparent ceramics for laser illumination.Recently, the Research Center for Infrared Optical Materials of the Shanghai Institute of Optics and Precision Mechanics, Chines...

    2023-10-17
    Übersetzung anzeigen
  • New Progress in Research on Three Lattice Photonic Crystal Surface Emission Lasers at Changchun Institute of Optics and Mechanics

    Recently, Tong Cunzhu, the research team of the Chinese President of Science, Chunguang Institute of Mechanical Mechanics, made important progress in the research field of photonic crystal surface emitting lasers (PCSEL), proposed a three lattice structure and achieved a low threshold 1550nm PCSEL. Relevant achievements were published in Light: Science and Application vol.13, 442024, and the famou...

    2024-03-15
    Übersetzung anzeigen