Deutsch

Researchers use laser doping to enhance the oxidation of IBC solar cells

915
2024-02-20 14:09:58
Übersetzung anzeigen

Researchers from the International Solar Research Center at Konstanz and Delft University of Technology have discovered a method to pattern the back end of a cross finger rear contact battery, improving its efficiency by making certain parts of the solar cell thicker.

Researchers have developed a new technology that enhances oxidation in selected areas by patterning the back or back of IBC solar cells through laser doping processes.
The team found that this led to more effective patterning and also served as a protective layer for further manufacturing steps. This provides potential for expanding manufacturing scale and achieving commercialization of solar energy technology.

The new method utilizes the enhanced oxidation performance of phosphate glass layers in the local laser doped region with high phosphorus concentration. This method is expected to make these cells more efficient.
Since the development of the first batch of IBC batteries in the early 1970s, they have been widely used as the back or non lighting side of solar cells.

Compared to traditional double-sided contact solar cells, the advantage of IBC cells is that they eliminate any optical shadow loss caused by the metal fingers and busbars on the front. This makes solar cells have a higher short-circuit current density and reduces the complexity of battery interconnection within the module.

Therefore, a more comprehensive front surface texture and light capture scheme can be used on the front surface of the IBC structure. This design architecture makes it the perfect component for mechanically stacked batteries using higher bandgap technology.

The Fraunhofer Solar Systems Research Institute, headquartered in Germany, also achieved a record 26% conversion efficiency of double-sided contact silicon solar cells in 2021. Due to its low complexity, it is favored in industrial production.
Last September, researchers from the Fraunhofer Solar Energy Institute ISE and NWO Institute AMOLF also developed a multi junction solar cell with an efficiency of a record breaking 36.1%. This method stacks multiple layers of absorbing materials together, allowing each layer to effectively capture specific parts of the solar spectrum.

Source: Laser Net

Ähnliche Empfehlungen
  • A new type of electrically driven organic semiconductor laser can be used in the fields of spectroscopy, metrology, and sensing

    According to a report from Maims Consulting, scientists at the University of St. Andrews in the UK recently stated that they have made a "significant breakthrough" in the decades of challenges in developing compact organic semiconductor laser technology.Firstly, an OLED with a world record light output was manufactured, and then integrated with a polymer laser structure. This new type of las...

    2023-10-07
    Übersetzung anzeigen
  • Wuhan Semiconductor Laser Equipment Industry Innovation Joint Laboratory Achieves New Breakthrough

    On February 7th, at the Wuhan Semiconductor Laser Equipment Industry Innovation Joint Laboratory located in the HGTECH Technology Intelligent Manufacturing Future Industrial Park, Huang Wei, the technical director of the laboratory and the director of HGTECH Technology's semiconductor product line, gestured with his hands to introduce the principle of "glass through-hole technology" to Changjiang ...

    02-18
    Übersetzung anzeigen
  • Improvements in LiDAR technology will help NASA scientists and explorers perform remote sensing and measurement functions

    Improvements in LiDAR technology will assist NASA scientists and explorers in remote sensing and measurement, surveying, 3D image scanning, hazard detection and avoidance, and navigation.Like sonar that uses light instead of sound, LiDAR technology is increasingly helping NASA scientists and explorers with remote sensing and measurement, surveying, 3D image scanning, hazard detection and avoidance...

    2023-10-26
    Übersetzung anzeigen
  • A US research team has developed a new type of photonic memory computing device

    Recently, a research team from the University of California, Santa Barbara has successfully developed a new type of photonic memory computing device that integrates non reciprocal magneto-optical technology. This device achieves high-speed, high-energy efficiency, and ultra-high durability photon computing by utilizing the non reciprocal phase shift phenomenon. The research findings, titled "Integ...

    2024-10-24
    Übersetzung anzeigen
  • Monport Laser's grand anniversary event ignited a boom in laser engraving industry

    Monport Laser, a leading manufacturer of laser engraving machines, is pleased to announce an exciting anniversary on its website. The event will mark the anniversary of Monport Laser and offer customers a range of exclusive offers and promotions. The event will highlight Monport Laser's commitment to innovation, customer satisfaction and the magic of laser engraving.The Monport Laser Anniversary...

    2023-08-04
    Übersetzung anzeigen