Deutsch

Ultra fast laser tracking the "ballistic" motion of electrons in graphene

385
2024-01-09 14:07:13
Übersetzung anzeigen

Figure 1. The setup of Hui Zhao and his team at the University of Kansas Ultra Fast Laser Laboratory.
A team of researchers from the University of Kansas's ultrafast laser laboratory recently managed to capture real-time ballistic transmission of electrons in graphene, which could lead to faster, more powerful, and more energy-efficient electronic devices in the future.

The motion of electrons is often interrupted by collisions with other particles in the solid, approximately 10 to 100 billion times per second. This will slow down the speed of electrons, resulting in energy loss and generating excess heat. If these collisions can be prevented, then electrons can move unobstructed in solids similar to ballistic missiles as they propagate in the air.

"The ultrafast laser provides ultra-high time resolution and is one of the fastest experimental tools," said Hui Zhao, a professor of physics and astronomy. The ballistic transmission of electrons in solids occurs on a very short time scale, so studying ballistic transmission through ultrafast lasers to track the motion of electrons is a perfect match.

Previous electrical measurements have revealed the characteristics of ballistic transportation, "but in reality, tracking their ballistic motion in real-time and real space is cool," Zhao added. This provides a non-invasive and non-destructive tool for monitoring electrons in solids.

The research team observed the ballistic motion in graphene, which is composed of a single layer of carbon atoms forming a hexagonal lattice structure. Graphene is hailed as a magical material because of its unusual properties that enable faster and more efficient next-generation electronic devices.

"Light provides energy to electrons to release them, allowing them to move freely and leaving a 'hole' in their original position," Zhao said. However, electrons in graphene can only maintain a movement of about one trillionth of a second before falling back into the cavity, making tracking their motion a challenge.

To address this issue, the team designed and manufactured a four layer artificial structure, with two layers of graphene separated by molybdenum disulfide and molybdenum diselenide. "By inserting two single-layer semiconductors between two graphene layers, we separate electrons and holes, so that electrons do not fall back into holes quickly, providing us with enough time window to analyze the properties of electron motion," Zhao said.
A two-layer molecule with a total thickness of only 1.5 nanometers "forces electrons to keep moving for about 50 trillion parts of a second," said Dr. Ryan Scott, who conducted the experiment. For researchers equipped with lasers, this is enough to track the motion of electrons at a speed of 0.1 trillion parts per second.

The measurement device of the team is a transient absorption microscope based on ultrafast laser, which can analyze the motion of electrons at the nanoscale spatial resolution. "Our technology tracks moving electrons in graphene by affecting light reflection - they slightly increase the reflectivity of the sample at its position," Zhao said. This allows us to use laser pulses to track their movement.

In other words, they use a tightly focused laser pulse called a "pump pulse" to release electrons from the sample. They track the reflectivity of the sample by drawing another focused laser pulse called a "probe pulse", which reaches the sample at a later time.

In order to detect such small changes, they released 20000 electrons at once and used a probe laser to reflect the sample and measure this reflectivity. The team repeated this process 80 million times for each data point. Figure 2 shows an example of their key results in the displacement vs. time graph of small electrons, with straight lines representing uniform motion. Therefore, researchers have concluded that electrons move ballistic at an average speed of 22 kilometers per second, at a speed of approximately 20 trillion parts per second, and then encounter something that terminates their ballistic motion.

Figure 2. The relationship between electron displacement and time in graphene, plotted by ultrafast laser measurement.

Compared to electrical detection technology, their all optical ultrafast laser technology provides the high resolution required to explore electron transfer in ballistic and coherent states.

One of the most surprising aspects of the team's work was that their initial testing confirmed the effectiveness of their device structure design. "Electrons are indeed separated from holes by two monolayers and remain in motion for a longer period of time," Zhao said. So we know we have a great opportunity to track their ballistic motion. Our team has been studying charge transfer in van der Waals heterostructure types for 10 years, so we are pleased to see that we can use these artificial structures to fine tune electrons and keep them moving for longer periods of time.

What is the biggest challenge? Due to weak optical signals, the team had to average many measurement values to obtain conclusive features. "This requires the experimental setup to remain stable for a long period of time," Zhao said. "It requires some skills and tedious work to complete."

The real good news is that ballistic electronic transmission is fast and non scattering, so electronic devices using ballistic transmission may be faster, more powerful, and more energy-efficient, thereby reducing latency and heat issues.

"Now that we have a 'radar gun' that monitors ballistic electronic motion, we will attempt to use it as a tool to study how to control electronic motion using electric fields and other means," Zhao said. We also want to explore new device designs to extend the ballistic transmission length of electrons. The samples in this study were stored at room temperature. Cooling the samples to a lower temperature can also extend their ballistic length.

This project has received support from the US Department of Energy, and Ryan Scott's work has been supported by the Redeker Scholarship and Graduate Research Award from the University of Kansas.

Source: Laser Net

Ähnliche Empfehlungen
  • Laser induced magnetic generation of non-magnetic materials at room temperature helps to develop faster and more energy-efficient information transmission and storage technologies

    Researchers from the University of Stockholm in Sweden, the Nordic Institute for Theoretical Physics, and the University of Cafoscari in Venice, Italy have successfully demonstrated for the first time how lasers induce quantum behavior at room temperature and make non-magnetic materials magnetic. This breakthrough is expected to pave the way for faster and more energy-efficient computers, informat...

    2024-06-03
    Übersetzung anzeigen
  • Micro ring resonators with enormous potential: hybrid devices significantly improve laser technology

    The team from the Photonic Systems Laboratory at the Federal Institute of Technology in Lausanne has developed a chip level laser source that can improve the performance of semiconductor lasers while generating shorter wavelengths.This groundbreaking work, led by Professor Camille Br è s and postdoctoral researcher Marco Clementi from the Federal Institute of Technology in Lausanne, represe...

    2023-12-11
    Übersetzung anzeigen
  • Coherent Axon laser won the 2023 Business Innovation Award from the British Physical Society

    One of the laser leaders in the field of life sciences, Coherent Gao Yi (New York Stock Exchange: COHR), recently announced that its Axon laser won the 2023 Business Innovation Award at the awards ceremony held by the British Physical Society on October 30th.Dr. Vincent D. Mattera, Jr., Chairman and CEO of Coherent, stated that, Coherent, especially our team at the Center for Excellence in Ultrafa...

    2023-11-03
    Übersetzung anzeigen
  • Researchers improve laser behavior by tying laser knots

    Researchers have created a new type of laser that, despite environmental noise and manufacturing defects, still performs as expected. Technically speaking, researchers have created a topology, time, and mode-locked laser. This study has the potential to improve sensors and computing hardware.A mode-locked laser emits light with regular pulses instead of a continuous beam. Pulses can be very counta...

    2024-03-07
    Übersetzung anzeigen
  • ZLDS100, a British high frequency laser displacement sensor, monitors multipoint vibration of silencers

    A muffler is a key component of a car's exhaust system, designed to reduce noise levels and emissions. The vibration of a muffler can have a significant impact on its performance and life. In order to understand the performance and behavior of the muffler, it is necessary to make multi-point vibration measurement. First, it enables engineers to assess the structural integrity and durability of a m...

    2023-08-04
    Übersetzung anzeigen