Deutsch

Sivers will develop laser arrays for artificial intelligence and deliver prototypes in 2024

408
2024-03-18 14:04:31
Übersetzung anzeigen

Sivers Optics, a subsidiary of Sivers Semiconductors, has signed a product development agreement with an undisclosed company.

Starting from the initial contract worth $1.3 million, the prototype will be delivered in 2024, and it is expected that the agreement will grow rapidly in 2025 before transitioning to mass production. After entering full production, customers expect the annual chip production to exceed millions by 2026.

Sivers is an advanced custom laser manufacturer for high-speed optical solutions. The company stated that it is ready to fully leverage the growing demand for next-generation laser chips, which can meet the urgent needs of artificial intelligence computing. The company's optical communication technology has provided support for applications that require high bandwidth and low latency data transmission. The new collaboration will further expand Sivers' footprint to the rapidly developing field of artificial intelligence hardware.

Anders Storm stated, "As optical solutions become crucial for advanced artificial intelligence workloads, our technology will help drive the speed of light data transmission required for this new computing paradigm. This is an excellent opportunity in the short term and a huge opportunity for sustained growth starting from 2026." Sivers Semiconductor Group CEO.

Source: Laser Net

Ähnliche Empfehlungen
  • New nanophotonic circuits demonstrate the potential of quantum networks

    The Purdue University team in the United States has captured alkali metal atoms (cesium) in integrated photonic circuits, which can serve as transistors for photons (the smallest energy unit of light). These captured atoms demonstrate for the first time the potential of cold atom integrated nanophotonic circuits to construct quantum networks. The research results were published in the latest issue...

    2024-08-14
    Übersetzung anzeigen
  • New LiDAR can 'see' faces from hundreds of meters away

    At a distance of 325 meters, the human eye may only be able to distinguish between a person's head and body, making it difficult to discern any other differences. But a research team including Heriot Watt University in the UK and Massachusetts Institute of Technology in the US has developed a new type of LiDAR scanner that can perform detailed analysis of a person's face from such a distance and c...

    02-11
    Übersetzung anzeigen
  • Relevant teams of the Chinese Academy of Sciences breakthrough the application difficulties of ultra compact gas laser system in special scenarios

    Recently, Liang Xu's team from the Laser Center of Anguang Institute, Chinese Academy of Sciences, Hefei Institute of Materia Medica, conducted research on corona discharge fluid control and its application in the gas laser system, proposed an electric field flow field coupling analysis model suitable for multi pin corona discharge scenarios, and revealed the flow velocity distribution characteris...

    2024-07-20
    Übersetzung anzeigen
  • Jenoptik announces record high preliminary performance for 2024

    Recently, Jenoptik, a German company, released its preliminary performance for 2024, delivering a record high in both revenue and profit, but also revealing hidden concerns amidst industry cyclical fluctuations. Against the backdrop of weak demand in the semiconductor equipment market and increasing global economic uncertainty, this company with laser and optical technology as its core is attempti...

    02-14
    Übersetzung anzeigen
  • Using laser welding technology to manufacture rotor shafts at the speed of light

    How can EMAG Laser Technology accelerate the production of critical powertrain components using its flagship product ELC 6 system?The rapid popularity of electric vehicles worldwide indicates that production planners must increase their efforts in producing key components of electric vehicles, particularly the rotor shaft. The importance of the rotor shaft as the core component for converting elec...

    2024-07-17
    Übersetzung anzeigen