Deutsch

Sivers will develop laser arrays for artificial intelligence and deliver prototypes in 2024

510
2024-03-18 14:04:31
Übersetzung anzeigen

Sivers Optics, a subsidiary of Sivers Semiconductors, has signed a product development agreement with an undisclosed company.

Starting from the initial contract worth $1.3 million, the prototype will be delivered in 2024, and it is expected that the agreement will grow rapidly in 2025 before transitioning to mass production. After entering full production, customers expect the annual chip production to exceed millions by 2026.

Sivers is an advanced custom laser manufacturer for high-speed optical solutions. The company stated that it is ready to fully leverage the growing demand for next-generation laser chips, which can meet the urgent needs of artificial intelligence computing. The company's optical communication technology has provided support for applications that require high bandwidth and low latency data transmission. The new collaboration will further expand Sivers' footprint to the rapidly developing field of artificial intelligence hardware.

Anders Storm stated, "As optical solutions become crucial for advanced artificial intelligence workloads, our technology will help drive the speed of light data transmission required for this new computing paradigm. This is an excellent opportunity in the short term and a huge opportunity for sustained growth starting from 2026." Sivers Semiconductor Group CEO.

Source: Laser Net

Ähnliche Empfehlungen
  • ELI and LLNL strengthen transatlantic large-scale laser cooperation

    Lawrence Livermore National Laboratory (LLNL) and the Extreme Light Infrastructure (ELI) European Research Infrastructure Consortium (ERIC) have announced that they have signed a new Memorandum of Understanding. This builds on their existing decade of strategic collaboration to advance high-power laser technology.“We are looking forward to expanding our existing collaborations with ELI on areas su...

    07-09
    Übersetzung anzeigen
  • New photon avalanche nanoparticles may usher in the next generation of optical computers

    A research team led by Lawrence Berkeley National Laboratory (Berkeley Lab), Columbia University, and Autonomous University of Madrid has successfully developed a novel optical computing material using photon avalanche nanoparticles. This breakthrough achievement was recently published in the journal Nature Photonics, paving the way for the manufacture of optical memory and transistors at the nano...

    02-28
    Übersetzung anzeigen
  • NSF funding for the world leading EP-OPAL laser multi mechanism design in Rochester

    The National Science Foundation (NSF) of the United States has awarded the University of Rochester nearly $18 million for three years to design and prototype key technologies for EP-OPAL, a new facility dedicated to studying the interaction between ultra-high intensity lasers and matter.After the design project is completed, the facility can be built at the Laser Energy Laboratory (LLE). This fund...

    2023-09-26
    Übersetzung anzeigen
  • Japan's Murata Machinery Launches a Punch and 4kW Fiber Laser Integrated System

    Recently, Murata Machinery USA, a representative Japanese manufacturer of machinery and CNC machine tools, announced the launch of the latest cutting-edge punch and fiber laser integrated equipment - MF3048HL. This integrated machine combines the advantages of punch operation and laser cutting technology, eliminating the need for separate settings or material transfer between machines.Muratec's pu...

    2023-09-01
    Übersetzung anzeigen
  • Single photon avalanche diode for millimeter level object recognition using KIST

    LiDAR sensors are crucial for implementing modern technologies such as autonomous driving, AR/VR, and advanced driving assistance systems. For example, more accurate shape detection in AR/VR devices and smartphones depends on the improved range resolution of medium and short range LiDAR. This requires a single photon detector with improved timing jitter performance.LiDAR calculates the distance an...

    2024-02-03
    Übersetzung anzeigen