Deutsch

BWT's 3000W product speed surges by 200%

664
2025-05-12 15:23:38
Übersetzung anzeigen

In the era of speed and precision, the field of thin and medium plate processing is experiencing a revolutionary transformation. Today, let's explore a remarkably fast tool -- BWT’s Lightning 3000W@34μm fiber laser, and witness its impressive performance.

On busy production lines, this product is completing complex cutting tasks at astonishing speeds. Its high-speed, high-efficiency, and high-quality cutting capabilities make it a market favorite, continuously driving industry innovation.

 



Speed Soars!


Cutting tests show that the performance of the Lightning 3000W@34μm surpasses conventional products. For various materials, the efficiency of thin plate processing has increased severalfold, revolutionizing the laser cutting industry.

2mm aluminum alloy nitrogen cutting speed can reach 50m/min, 2.27 times faster than 50μm;

2mm carbon steel air cutting speed can reach 40m/min, 2.35 times faster than 50μm;

3mm stainless steel nitrogen cutting speed can reach 30m/min, 3 times faster than 50μm.

 



Fast! Stable! Precise!


The cutting test videos below demonstrate: in the 34μm vs. 50μm speed comparison, the 3000W@34μm processes faster, more steadily, and more precisely. Higher efficiency means lower production costs.

Additionally, with flexible positioning, even complex shapes can be formed accurately in one go.

The 3000W@34μm delivers outstanding results, with smooth cross-sections and neat edges on sample parts, leaving virtually no debris, significantly reducing the need for secondary processing.

This device excels in small-scale prototyping and is equally adept at handling large-scale production, balancing efficiency and quality. It stands out among many industry competitors, becoming a market leader.

 



Carbon Steel and Stainless Steel Cutting Samples


On the path to driving industry progress, BWT focuses on innovations in high power, high brightness, and high integration technologies, aiming to enhance the overall performance of fiber lasers. BWT is committed to providing superior and diverse laser solutions to global end customers, creating a new chapter in the future of laser applications together.

Source: BWT

Ähnliche Empfehlungen
  • Real time measurement of femtosecond dynamics of relativistic intense laser driven ultra-hot electron beams

    In the interaction between ultra short and ultra strong laser and matter, electrons with short pulse width and high energy are generated, commonly referred to as "hot electrons". The generation and transport of hot electrons is one of the important fundamental issues in high-energy density physics of lasers. Superhot electrons can excite a wide range of ultrafast electromagnetic radiation, as well...

    2024-04-30
    Übersetzung anzeigen
  • Laser induced magnetic generation of non-magnetic materials at room temperature helps to develop faster and more energy-efficient information transmission and storage technologies

    Researchers from the University of Stockholm in Sweden, the Nordic Institute for Theoretical Physics, and the University of Cafoscari in Venice, Italy have successfully demonstrated for the first time how lasers induce quantum behavior at room temperature and make non-magnetic materials magnetic. This breakthrough is expected to pave the way for faster and more energy-efficient computers, informat...

    2024-06-03
    Übersetzung anzeigen
  • The role of PTFE in laser processing

    Polytetrafluoroethylene (PTFE) has improved the efficiency and repeatability of nanosecond and picosecond laser processing technologies used in microelectronics and display glass manufacturing. In the field of precision manufacturing, the demand for efficient and repeatable processes is crucial. The laser structure of glass and laser ablation of silicon substrates are key areas where precision p...

    2024-07-26
    Übersetzung anzeigen
  • The application of lasers in material processing has driven industrial progress in Santa Catalina state

    Laser material processing has been widely used in advanced industries, ranging from designing and producing lightweight, ultra wear-resistant parts and equipment with complex geometric shapes to repairing damaged or worn components through technologies such as 3D printing of deposited metal powders or deposits.Use laser pulses for surface treatment to prevent fatigue. But the impact of such techno...

    2023-09-26
    Übersetzung anzeigen
  • Stuttgart University researchers develop a new high-power 3D printed micro optical device for compact lasers

    Researchers from the Fourth Institute of Physics at the University of Stuttgart have demonstrated the feasibility of 3D printed polymer based micro optical devices in harsh laser environments.This study was detailed in the Journal of Optics, outlining the use of 3D printing technology to directly manufacture microscale optical devices on fibers, seamlessly integrating fibers and laser crystals int...

    2024-01-09
    Übersetzung anzeigen