繁体中文

RTX Raytheon Company will develop ultra wide bandgap semiconductors for ultraviolet lasers

397
2024-09-30 14:11:00
查看翻譯

The UWBGS program will develop and optimize ultra wide bandgap materials and manufacturing processes for the next revolution in the semiconductor electronics field.

US military researchers need to develop new integrated circuit substrates, device layers, junctions, and low resistance electrical contacts for the new generation of ultra wide bandgap semiconductors. They found a solution from RTX company.

On September 13, 2024, personnel from the Defense Advanced Research Projects Agency (DARPA) located in Arlington, Virginia, announced a $5.3 million contract with the RTX Raytheon division in Arlington, Virginia, for the Ultra Wide Bandgap Semiconductor (UWBGS) project.

The UWBGS project will focus on developing and optimizing ultra wide bandgap materials and manufacturing processes to embrace the next revolution in the semiconductor electronics field. Ultra wide bandgap technology represents a new type of semiconductor that can be used for future RF and high-power electronics, deep ultraviolet electro-optic, quantum electronics, and system applications that must operate in harsh environments.

UWBGS will lay the foundation for producible and reliable high-performance ultra bandgap devices for various defense and commercial applications, such as high-power RF switches; High power density RF amplifier; High power RF protection device; High voltage switch; High temperature electronic devices; And deep ultraviolet lasers and light-emitting diodes.

This project will address some key technical challenges, such as achieving high-quality ultra wide bandgap materials, customizing the electrical properties of ultra wide bandgap materials, creating homogeneous and heterogeneous structures with abrupt junctions and low defect density, and ultra-low resistance electrical contacts. UWBGS will produce device testing structures to quantify improvements in these areas. To achieve the goal, the plan will fully utilize the latest developments in ultra wide bandgap materials.

Experts from the DARPA Microsystems Technology Office are focusing on two types of ultra wide bandgap devices: low defect density substrates with diameters greater than 100 millimeters; A device layer with high doping efficiency, mutated homojunctions and heterojunctions, low junction defect density, and ultra-low resistance electrical contacts.

DARPA researchers have stated that ultra wide bandgap materials such as aluminum nitride, cubic boron nitride, and diamond have the potential to revolutionize the application of semiconductor electronic devices, such as high-power RF switches and limiters, high-power density RF amplifiers for radar and communication systems, high-voltage switches for power electronics, high-temperature electronic devices and sensors for extreme environments, deep ultraviolet light emitting diodes (LEDs), and lasers.

However, the poor quality of ultra wide bandgap materials today limits their performance, and scientists must overcome multiple technical challenges to make this technology a success.

During the three-year UWBGS program, Raytheon engineers will focus on improving the material quality of device layers and junctions, as well as enhancing the electrical quality of metal contacts.

To this end, Raytheon Company will focus on three areas: large-area ultra wide bandgap substrates; Doping agents for ultra wide and wide forbidden homojunctions and heterojunctions; And a mixture of ultra-low resistance electrical contacts and ultra wide width forbidden materials.

Source: Yangtze River Delta Laser Alliance

相關推薦
  • Shanghai University of Technology publishes the latest Nature paper

    With the increasing demand for human data, the requirements for data storage methods are also increasing. Optical Data Storage (ODS) is a light based storage method commonly used in DVDs, which is low-cost and very durable. But ODS usually stores data in a single layer, and the amount of data that can be stored is limited. Gu Min, academician of Shanghai University of Technology, Wen Jing, and Rua...

    2024-02-26
    查看翻譯
  • Aerotech's next-generation laser processing technology for medical device manufacturing

    Recently, Aerotech Inc., a global leader in precision motion control and automation, launched the ultimate cylindrical laser machining motion platform LaserTurn160. LaserTurn160 is designed for unparalleled precision and efficiency, with a 40% increase in production capacity compared to similar systems, setting a new standard for medical device manufacturing. Extremely high efficiency, unparalle...

    02-08
    查看翻譯
  • Eoptolink launches optical transceivers for immersion cooling

    Eoptolink Technology has expanded its product portfolio to meet the new market of optical transceiver modules operating in environments using immersion cooling.The Eoptolink EOLO-138HG-5H-SYMR is an optical transceiver for the 800G OSFP DR8, which can be completely immersed in a 2-phase liquid cooling environment. The EOLO-138HG-02-SYMR is an 800G OSFP DR8+. This transceiver has fiber optic tail f...

    2024-03-26
    查看翻譯
  • Laser additive manufacturing: monitoring during defect occurrence

    Researchers at the Federal Institute of Technology in Lausanne have resolved the long-standing debate surrounding laser additive manufacturing processes through a groundbreaking defect detection method.The development of laser additive manufacturing is often hindered by unexpected defects. Traditional monitoring methods, such as thermal imaging and machine learning algorithms, have shown significa...

    2023-12-06
    查看翻譯
  • Reshaping the Sky: Laser Scanning Drones Innovate Data Collection

    Imagine soaring above the Earth, the world unfolds in patterns and reliefs, and the terrain whispers its secrets in the wind. Now imagine capturing these whispers and translating them into a digital language to draw our world map with unprecedented accuracy. Welcome to the forefront of laser scanning drones, a technological ballet in the sky where the fusion of flight and laser precision is reshap...

    2024-04-07
    查看翻譯