繁体中文

NKT Photonics utilizes fiber lasers to achieve deep space communication links

199
2025-07-21 10:31:02
查看翻譯

On July 7, the European Space Agency (ESA), established Europe’s first deep-space optical communication link with NASA’s Psyche mission using a high-power fiber laser system supplied by NKT Photonics, a subsidiary of Hamamatsu.
NKT’s announcement stated, “This achievement, conducted with NASA/JPL’s Deep Space Optical Communications (DSOC) demonstrator, marks a significant leap forward in high-data-rate communication across vast interplanetary distances.”


ESA’s multi-beam high-power fiber laser transmission system


The link is the result of collaboration between ESA, NASA/JPL, and a consortium of including NKT Photonics. The major technical challenges that were overcome have created a laser with enough power to be detected at extremely large distances, a pointing system with enough precision to aim accurately at the spacecraft an equally precise receiver system sensitive enough to detect the extremely faint return signals.

In collaboration with Swiss General Atomics Synopta, NKT Photonics supplied the multi-beam high-power fiber laser system, and the beam transmit system. The laser system emits a narrow-linewidth, modulated signal so that the distant spacecraft can precisely locate the ground station and lock onto it, establishing an optical link for high-speed data downlink.


ESA’s Ultima project


Located at the Kryoneri Observatory in Greece, the transmitter generates a multi-kilowatt beam capable of detection by the DSOC flight transceiver onboard the Psyche spacecraft, currently 265 million km distant, en route to the metal-rich 16 Psyche asteroid.

Laser system
The core of the laser system is based on NKT Photonics’ Koheras single-frequency fiber laser platform. The base for the configuration is an Acoustik line card sub-rack housing the Basik Y10 seed laser, a Boostik pre-amplifier as well as both AOM and EOM line cards used for spectral pre-conditioning and high frequency amplitude modulation. A splitter sends the signal to the five Boostik UHP high power amplifiers to bring the power up to the kW level needed to reach the spacecraft.

The bespoke amplifiers are based on NKT Photonics’ core fiber amplifier technology, also used in their directed energy activities but modified to enable high speed power modulation from 0 to 2 kW in less than 10 µs. Finally, a bespoke timing module line card provides all the timing and synchronization waveforms for the various beacon and data-uplink scenarios including the modem interface.

The beam transmit system’s precision allows it to point with arcsecond precision to the spacecraft, enabling both a beacon for accurate downlink and the potential to uplink data, providing a glimpse into the future of deep space communication.

Mike Yarrow, Senior Engineering Manager at NKT Photonics, said, “Our expertise in fiber laser technology has allowed us to contribute to a system that pushes the boundaries of what’s possible in free space optical communications. This project not only showcases our ability to deliver unprecedented power and precision to meet our customers’ stringent requirements but also reinforces our commitment to forging successful collaborations and advancing knowledge to benefit society as a whole.”

Source: optics.org

相關推薦
  • Danish scientists have created solar cells based on selenium using a new laser annealing technique

    A team of scientists at the Technical University of Denmark has created a selene-based solar cell by replacing thermal annealing with a new laser annealing strategy."In our work, we investigated the potential of this laser annealing strategy specifically for selenium thin film solar cells, and we report a new world record for fill factor, a new world record for ideal factor, and the most advanced ...

    2023-09-06
    查看翻譯
  • Allocate 10 billion US dollars! New York State to Build NA Extreme UV Lithography Center

    On December 11th local time, New York State announced a partnership with companies such as IBM, Micron, Applied Materials, and Tokyo Electronics to jointly invest $10 billion to expand the Albany NanoTech Complex in New York State, ultimately transforming it into a high numerical aperture extreme ultraviolet (NA EUV) lithography center to support the development of the world's most complex and pow...

    2023-12-15
    查看翻譯
  • Enhanced laser heterodyne spectroscopy contributes to the measurement of atmospheric greenhouse gases

    The research team led by Professor Gao Xiaoming of the Chinese Academy of Sciences Hefei Institute of Physical Sciences has improved the measurement accuracy of atmospheric greenhouse gases by using erbium-doped fiber amplifier assisted laser heterodyne radiometer.The study was published in the Journal of Optics and was selected as an editor's selection.LHR is renowned for its high sensitivity and...

    2023-10-25
    查看翻譯
  • Coherent's revenue for 2024 is $5.301 billion

    International laser giant Coherent's Q4 2024 sales exceeded expectations, reaching a historic high!Recently, Coherent released its highest quarterly sales data in history, mainly due to the demand for optical transceivers in artificial intelligence data center applications. For the three months ending December 31, the company's revenue was $1.43 billion, a year-on-year increase of 27% and a 6% inc...

    02-10
    查看翻譯
  • Cambridge scientists have achieved the long-sought quantum state stability in new 2D materials

    Scientists at the Cavendish laboratory have discovered the spin coherence of hexagonal boron nitride (hBN) under normal conditions, providing new prospects for the application of quantum technology.Researchers at Cavendish Laboratory have found that a single "atomic defect" in a material called hexagonal boron nitride (hBN) maintains spin coherence at room temperature and can be manipulated using ...

    2024-05-27
    查看翻譯