繁体中文

Halo Industries raises 580 million yuan to achieve significant breakthrough in SiC laser processing field

372
2024-07-18 15:13:25
查看翻譯

Recently, Halo Industries, an innovative technology company based in California, announced that it has successfully raised $80 million in Series B venture capital, marking a significant breakthrough in its use of laser technology to revolutionize the production of silicon carbide (SiC) semiconductor wafer substrates.

This financing is led by the US Innovation Technology Fund (USIT) and involves heavyweight investment institutions such as 8VC and SAIC, aiming to accelerate the commercialization process of technology and establish a new "gold standard" for Halo in SiC substrate production.

This startup separated from a research laboratory at Stanford University in 2014 to develop tools and technologies for manufacturing thin and flexible silicon for solar and semiconductor applications. The company is located in Santa Clara and has challenged the industry status quo in recent years with its disruptive multi-step process, aiming to significantly reduce wafer costs and lay a solid foundation for SiC power electronic devices in the electric vehicle (EV) and renewable energy fields.

Halo Industries has significantly increased the production and quality of SiC wafers through its manufacturing innovation, accelerating growth opportunities for multiple downstream applications including electric vehicles (EVs), electric vehicle charging stations, solar/wind electronics, grid infrastructure, industrial motor drives, HVAC, power rail/transportation, and aerospace/defense.

Halo Industries emphasizes that its innovative laser cutting method demonstrates significant advantages over traditional sawing techniques in reducing wafer defects and lowering energy and water consumption. SiC materials are considered an ideal choice for high-efficiency power electronic devices due to their wider electronic bandgap characteristics, and Halo's technology is the key to unlocking this potential.

Through our laser slicing tool, Halo has not only increased the yield and quality of SiC, but also greatly reduced waste and production costs, injecting strong momentum into the rapid development of clean energy technology, "said Andrei Iancu, CEO of the company.

With the surge in demand for high-efficiency power electronics products in the market, Halo's laser manufacturing tools and SiC production strategy are seen as a major "weapon" to promote sustainable electrification.

Halo has demonstrated strong production capacity: currently producing 1000 wafers per month and plans to increase it to 24000 wafers by the end of this year, with growth potential perfectly aligned with industry demand.

According to analyst reports, the global SiC wafer production in 2019 was approximately 100 million pieces, indicating a huge growth potential for this market. Halo's technological innovation not only increases the output of each wafer, but also effectively avoids the wafer bending and warping problems in traditional methods, further consolidating its market leading position.

The success of the California Energy Commission project has validated the outstanding performance of Halo technology, its zero material loss potential, and efficient mass production, indicating a significant reduction in the cost of conductive SiC substrates, bringing unprecedented cost-effectiveness advantages to advanced power electronics products. Halo is actively expanding its production capacity to meet the growing market demand and continues to drive the semiconductor industry towards a cleaner and more efficient direction.

This financing not only lays a solid financial foundation for Halo's future development, but also provides unlimited possibilities for its technological innovation and market expansion.

Halo Industries is leading a new era in SiC wafer production with its unique laser technology and steadfast market vision, contributing significantly to the global clean energy revolution.

Source: OFweek

相關推薦
  • BAE conducts laser pipeline scanning tests at the shipyard

    BAE Systems Australia has successfully conducted experiments at the Osborne Naval Shipyard and Henderson Shipyard, using laser scanning technology to create 3D models of pipelines that will be installed on the currently under construction Hunter class frigates.A one week trial was conducted at the Zero Line Future factory in southern Adelaide and BAE Systems Australia's Henderson Shipyard, demonst...

    2023-12-13
    查看翻譯
  • Two Enterprises Collaborate to Overcome Optical Pollution in Vacuum Laser Welding

    Cambridge Vacuum Engineering (CVE), a precision welding equipment company in the UK, and Cranfield University recently announced that they have successfully reached a Knowledge Transfer Partnership (KTP), which will provide global engineers with more welding options.In this cooperation, both parties jointly solved the optical pollution problem in vacuum laser welding, paving the way for the compre...

    2024-02-03
    查看翻譯
  • NASA plans to use lasers to measure the impact of exhaust gases on the lunar surface during landing, in order to plan lunar landings more effectively

    Recently, NASA's official website showed that a research team at the University of Central Florida has tested an instrument called Ejecta STORM, which aims to measure the size and velocity of surface particles generated by exhaust gases from rocket powered landers on the moon or Mars.According to NASA, when a spacecraft lands on the moon or Mars, rocket exhaust plumes can produce efflorescent ejec...

    2023-10-31
    查看翻譯
  • Application and Effect of Laser Cleaning

    Mold cleaning: Mold plays a very important role in industrial production. Currently, there are over a thousand mold related enterprises in China, driving the related output value to nearly 10 billion yuan. Among them, mold cleaning is an essential step in mold production. Laser can achieve contactless cleaning of molds, which is very safe for the surface of the mold, ensuring its accuracy, and can...

    2023-10-14
    查看翻譯
  • Progress in research on neodymium doped strontium aluminate lanthanum magnesium laser crystals by Shanghai Optics and Machinery Institute

    Recently, the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the research of Nd: ASL (Sr0.7Nd0.05La0.25Mg0.3Al22.7O19) laser crystals, and the related achievements were published in Infrared Physics&Technology under the title of "Tunable laser operations on Nd doped cont...

    2024-04-17
    查看翻譯