繁体中文

Transforming solid-state single photon sources using multifunctional metalenses

398
2024-02-26 14:07:35
查看翻譯

Quantum photonics is one of the important research directions in the quantum field, which utilizes the unique properties of light at the quantum level. The core of this field is the deterministic single photon source, which sequentially emits individual photons through spontaneous emission and is the cornerstone of quantum communication, computing, and secure encryption. However, under environmental conditions, the interaction between light and solid-state single photon emitters (SPE, such as quantum dots, diamond nitrogen vacancy color centers, defects in two-dimensional materials) is very weak and difficult to control. 

Therefore, the resulting single photon source has many problems, such as low collection efficiency, lack of directionality, and poor polarization/phase characteristics. To create complex quantum optical states and fully utilize the multiple degrees of freedom of a single photon (such as polarization and orbital angular momentum), it is necessary to construct a complex optical system composed of a series of discrete components (such as polarizers, wave plates, lenses, spatial light modulators, etc.). This method is inherently unfriendly due to its large configuration, difficult alignment, instability, high loss, and limited functionality.

Schematic diagram of multi-dimensional manipulation of hBN quantum emission using multifunctional metalenses


Design and characterization of polarization beam splitting metalenses
Optical metasurfaces are extremely thin nanoantennas arranged in carefully designed patterns, with unprecedented potential in manipulating all properties of classical and non classical light, providing a unique and promising platform for quantum nanophotonics. Especially, optical metasurfaces provide a new platform for generating and manipulating quantum states of photons, and offer new methods for controlling quantum light in integrated quantum photon devices.

It is reported that a joint research team led by Dr. Chi Li and Dr. Haoran Ren from Monash University, Professor Junsuk Rho from Pohang University of Science and Technology, and Professor Igor Aharonovich from Sydney University of Science and Technology has developed a new type of multifunctional metalenses, redefining the control of SPE quantum emission in hexagonal boron nitride (hBN) at room temperature. This research achievement showcases the rapid development of quantum photonics and has been published in the eLight journal under the title "Arrarly structured quantum emission with multifunctional metals".

This designed superlens can simultaneously map quantum emissions from superbright defects in hBN and imprint any wavefront onto the orthogonal polarization state of the light source, while shaping directionality, polarization, and orbital angular momentum (OAM). Therefore, this hybrid quantum superlattice lens system can simultaneously manipulate multiple degrees of freedom of the quantum light source. In its design, researchers used low loss hydrogenated amorphous silicon as the material for constructing the metalens unit. The extinction coefficient of this material in the hBN SPE emission spectrum can be ignored, thus achieving a collection efficiency of up to 0.3. Using this design, researchers created three different polarization separation superlenses and measured them using SPE to verify their ability to simultaneously control the directionality and polarization of single photon emission. In addition, researchers have also implemented more complex superlenses that can encode different helical phase wavefronts (OAM modes) in addition to directionality and polarization.

This study demonstrates the ability of superlenses to manipulate the quantum emission of hBN defects, allowing arbitrary wavefronts to be imprinted onto orthogonal polarization states. The multifunctionality of metalenses provides an important foundation for achieving advanced quantum computing, secure communication, and enhanced quantum sensing. Researchers believe that this quantum metasurface has the excellent ability to independently and synchronously control multiple degrees of freedom of photons, and will rapidly develop as a unique enabling platform for generating, routing, and manipulating quantum optical states.

Despite the pioneering nature of this study, the multifunctional metalens used to manipulate single photon emission from hBN SPE remains an external component, i.e. separate from the photon source. By adding transparent spacers, hBN SPE can be directly integrated into the superlens, but adjusting the device architecture and arrangement method is not an easy task and further research is needed. In addition, there is still room for development of integrated quantum superlattice surface chips that can simultaneously generate photon states and engage in high-dimensional quantum entanglement. In addition, the static properties of quantum metasurfaces that have been demonstrated so far severely limit their functional range, thus requiring the development of spatiotemporal quantum metasurfaces to provide new research avenues and breakthroughs for planar quantum photonics.

Source: China Optical Journal Network

相關推薦
  • Shanghai University of Technology publishes the latest Nature paper

    With the increasing demand for human data, the requirements for data storage methods are also increasing. Optical Data Storage (ODS) is a light based storage method commonly used in DVDs, which is low-cost and very durable. But ODS usually stores data in a single layer, and the amount of data that can be stored is limited. Gu Min, academician of Shanghai University of Technology, Wen Jing, and Rua...

    2024-02-26
    查看翻譯
  • Coherent's total fiscal 2023 revenue was $5.16 billion, with laser business accounting for 29 percent

    On August 16, Coherent, an American laser system solutions provider, announced its fiscal year 2023 and fourth quarter results for the year ended June 30, 2023. This is also the first annual report released after the merger of II-VI and Coherent.Fiscal year 2023 revenueCoherent reported revenue of $5.16 billion for the full fiscal year 2023, up 56% year over year.By business unit, the Networking b...

    2023-08-17
    查看翻譯
  • Is CTC technology in the booming new energy industry likely to disrupt the fiber laser industry?

    Recently, the term CTC technology has become a hot topic in the new energy vehicle industry. During the relatively slow period of electrochemical innovation, this structural innovation effectively helped the new energy industry reduce costs and increase efficiency, while also increasing the range of new energy vehicles to a certain extent. However, recently the author learned that the concept of C...

    2023-09-18
    查看翻譯
  • Aspen Laser launches patented four wavelength Ascent laser series in the medical equipment industry

    Recently, Aspen Laser, an emerging global leader in the medical equipment industry, announced that after several months of trial operation, it has officially launched the Ascent laser series and is ready for shipment. It is reported that this new therapeutic laser series, with its outstanding 32 watt combined power and unique patented four wave laser technology in the industry, once again demons...

    2024-08-12
    查看翻譯
  • Nanchang University research progresses in acoustic resolution photoacoustic microimaging enhancement

    As a promising imaging modality that combines the high spatial resolution of optical imaging and the deep tissue penetration ability of ultrasound imaging, photoacoustic microscopy (PAM) has attracted a lot of attention in the field of biomedical research, and has a wide range of applications in many fields, such as tumor detection, dermatology, and vascular morphology assessment. Depending on the...

    2024-09-18
    查看翻譯