繁体中文

Researchers prepare a new type of optical material with highly tunable refractive index

232
2024-06-25 12:00:16
查看翻譯

It is reported that researchers from Beijing University of Chemical Technology and BOE Technology Group Co., Ltd. have collaborated to develop a transparent organic-inorganic composite optical adhesive material with highly tunable refractive index. The related research paper was recently published in Engineering.

In the early days, glass was the main raw material for optical components. In recent years, organic resin based optical materials have developed rapidly due to their advantages of easy molding, light weight, and low cost. However, currently commercialized organic optical resins are often limited by the structural characteristics of organic molecules and polymer chains, with refractive indices generally limited to 1.4-1.6.

Refractive index is one of the important parameters of optical materials. High refractive index can reduce the thickness and curvature of optical components, while maintaining optical functional effects and achieving miniaturization of components, expanding their application range.

Based on the molecular structure characteristics of acrylic resin based UV curable optical adhesive and the practical application needs in optoelectronic display devices, the R&D team has developed a highly transparent and high refractive index optical adhesive material by optimizing the preparation of titanium dioxide nanoparticles and their composite process with acrylic resin.

The R&D personnel used electron microscopy imaging and atomic force microscopy to analyze and test the microstructure of the composite material, confirming that titanium dioxide nanoparticles are uniformly dispersed in the composite material, and the cured film has good flatness. When the mass fraction of titanium dioxide in the composite optical adhesive is 30wt% (mass percentage), the refractive index of the composite material can reach 1.67.


In addition, after being cured into a film by ultraviolet (UV), the refractive index of the material can even reach 2.0, while maintaining high transparency of over 98% and low haze of less than 0.05% in the visible light range. Moreover, precision processing of optical microstructures can be further achieved through embossing technology, which can be used to make new optical components such as display light guides. In the paper, the R&D team demonstrated that using a new type of optical adhesive to manufacture a micro prism type light guiding film can effectively improve illumination and reduce energy consumption. In the future, this achievement is expected to be widely applied in fields such as precision medicine, health lighting, and new display products.

Article source: Science and Technology Daily

相關推薦
  • Manz AG officially announces its application for bankruptcy restructuring

    Last month, Manz AG officially announced that the company is about to undergo bankruptcy restructuring. The board of directors of the company believes that due to insufficient liquidity and excessive debt, Manz AG intends to apply for bankruptcy proceedings in accordance with bankruptcy laws. The application is expected to be submitted in the next few days. Manz AG is headquartered in Reutlingen...

    01-07
    查看翻譯
  • Using laser controlled filaments in vanadium dioxide to enhance neural morphology calculations

    In a new "Progress in Science" study, scientists from the University of Science and Technology of China have developed a dynamic network structure for neural morphology calculations using laser controlled conductive wires.Neuromorphic computing is an emerging research field that draws inspiration from the human brain to create efficient and intelligent computer systems. The core of neuromorphic co...

    2023-10-13
    查看翻譯
  • Halo Industries raises 580 million yuan to achieve significant breakthrough in SiC laser processing field

    Recently, Halo Industries, an innovative technology company based in California, announced that it has successfully raised $80 million in Series B venture capital, marking a significant breakthrough in its use of laser technology to revolutionize the production of silicon carbide (SiC) semiconductor wafer substrates.This financing is led by the US Innovation Technology Fund (USIT) and involves hea...

    2024-07-18
    查看翻譯
  • Southeast University makes new progress in quantum efficiency research of van der Waals light-emitting diodes

    Recently, Professor Ni Zhenhua from the School of Electronic Science and Engineering at Southeast University, Professor Lv Junpeng from the School of Physics, Professor Liu Hongwei from the School of Physical Science and Technology at Nanjing Normal University, and Professor Zhou Peng from the School of Microelectronics at Fudan University collaborated to propose a van der Waals light-emitting dio...

    2024-10-28
    查看翻譯
  • LASIT's Laser Revolution: Illuminating the Path to a Greener Future

    In the breakthrough transformation towards sustainable industrial practices, LASIT is at the forefront of the ecological revolution in laser marking technology. This evolution is not just about labeling products; This is about marking a sustainable future.Environmental Innovation: A New Era of Industrial PrecisionLASIT's laser technology is a model of environmental protection. Unlike traditional m...

    2023-11-28
    查看翻譯