繁体中文

Topological high-order harmonic spectroscopy in Communications Physics

516
2024-01-15 17:07:40
查看翻譯

It is reported that researchers from the University of Salamanca in Spain have demonstrated a high-order harmonic spectroscopy scheme generated by the interaction between a structured driving beam and a crystal solid target. This work promotes the topological analysis of high-order harmonic fields as a spectroscopic tool to reveal nonlinearity in the coupling of light and target symmetry. The relevant paper was published in Communications Physics under the title of "Topological high molecular spectroscopy copy".

High order harmonic generation (HHG) is an extreme nonlinear effect that occurs when a strong field laser is focused on a gas medium, resulting in hundreds of orders of high-energy harmonic photons.

In the paper, researchers demonstrated the high-order harmonic spectroscopy scheme generated by the interaction between structured driving beams and crystal solid targets. Unlike isotropic gas targets, researchers have demonstrated the coupling of crystal symmetry with the driving beam topology during high-order harmonic generation (HHG) processes. This coupling feature is encoded into a complex spatial structure that emits harmonics. In particular, researchers have revealed this interwoven photon conversion by studying the HHG of monolayer graphene driven by LPVB.

Figure 1: Overview of topological high-order harmonic spectra in graphene and argon gas.

Figure 2: Far field harmonic emission curves of circularly polarized components on the left (LCP) and right (RCP) sides.

Figure 3: Comparison of orbital angular momentum (OAM) carried by high-order harmonics emitted from anisotropic and isotropic targets.

Researchers have found that, unlike isotropic cases, the harmonics generated by crystal targets can break the conservation of the driving topology based on their compositional symmetry. Researchers have provided an analytical derivation that can (1) predict the topology of high-order harmonic beams from the anisotropic symmetry of the target, and (2) retrieve the anisotropic response of the target from the topology of high-order harmonic beams. Therefore, high-order harmonic spectroscopy based on topological structure can extract spatial resolution information of target nonlinear response, which cannot be obtained by standard spectroscopy techniques.

Figure 4: Near field harmonic emission profiles obtained in anisotropic and isotropic targets.

Figure 5: Retrieve nonlinear response from topological harmonic characteristics.

Although researchers have demonstrated the interaction between the topological structure of vector beam drivers and target symmetry in two-dimensional materials such as graphene, they believe that their research results open up a universal scenario for topological optics, where the non-linear response of the target is coupled with the topological structure of light. Researchers believe that this technology can be further used to characterize more complex targets, such as polycrystalline or heterostructures.

Source: Sohu

相關推薦
  • Trumpf's annual sales decreased by 17% compared to the previous year to 4.3 billion euros

    High-tech and industrial laser company Trumpf has reported rather negative preliminary trading figures for the fiscal year (FY) 2024-2025, with CEO Nicola Leibinger-Kammüller stating that “the lowest point has been reached.”The Ditzingen, Germany-based company stated that it had ended the latest fiscal year “as expected – with a decline in sales and order intake.” According to preliminary calcul...

    07-25
    查看翻譯
  • Ortel launches advanced 1550nm laser to enhance LiDAR and optical sensing functions

    Ortel belongs to the Photonics Foundries group and has launched its latest innovative product - the 1786 1550 nm laser module, aimed at significantly improving optical sensing in various applications. This laser module is designed specifically for continuous wavelength operation and is a key component of systems that require coherent light sources for precise sensing in environments with fluctuati...

    2024-03-16
    查看翻譯
  • High performance optoelectronic device developer "Micro Source Photon" completes B+round financing

    Recently, Weiyuan Photon (Shenzhen) Technology Co., Ltd. (hereinafter referred to as "Weiyuan Photon") announced the completion of a B+round of financing, with investors including Yicun Capital, Chenfeng Capital, and Beijing Guoqian Investment. The specific amount has not been disclosed. According to its official website, MicroSource Photonics was founded in November 2018, with the main members...

    2024-07-23
    查看翻譯
  • Dublin City University has successfully tested the laser components of the next generation space navigation atomic clock

    The team collaborated with Eblana Photonics and Enlightra to showcase for the first time a new caliber laser, which will enable atomic clocks to be more efficient and compact for future satellite missions.This innovation addresses the key needs identified by the European Space Agency, which is the leading organization for the next generation of space navigation systems. This work was recently publ...

    2023-09-22
    查看翻譯
  • The Asia Photonics Expo will be held in Singapore from February 26th to 28th, 2025

    The Asia Photonics Expo (APE), as an internationally leading comprehensive brand promotion and business negotiation platform for optoelectronics, will be grandly held from February 26 to 28, 2025 at the L1 exhibition hall of the Sands Expo&Convention Centre in Singapore. As the top event in the field of optoelectronics, APE Asia Optoelectronics Expo will focus on cutting-edge innovative techno...

    01-03
    查看翻譯