繁体中文

Laser technology helps wafer bonding, creating a cutting-edge laser system production factory

336
2024-06-19 15:17:30
查看翻譯

Recently, Coherent LaserSystems, the global leader in laser and photon solutions, and Fraunhofer IZM-ASSID jointly announced that they have reached a strategic partnership to develop and optimize alternative bonding and debonding technologies for advanced CMOS and heterogeneous integrated applications (including quantum computing), in which laser technology plays a crucial role.

 



It is reported that EV Group (EVG) is a leading supplier of wafer bonding and lithography equipment in the MEMS, nanotechnology, and semiconductor markets. Fraunhofer IZM-ASSID (All Silicon System Integration Dresden) is a division of Fraunhofer IZM, providing world leading application research in semiconductor 3D wafer level system integration.

It is reported that both parties have jointly built an advanced laser system production factory in Lubeck, Germany. This factory not only demonstrates the outstanding capabilities of both parties in technological innovation and green manufacturing, but also sets a new benchmark for the global laser industry.
In this collaboration, German construction company Siemke&Co Br ü cken (SBI) serves as the general contractor responsible for the construction of the entire facility. The new facilities will include approximately 2600 square meters of cleanroom, 1900 square meters of cleanroom expansion area, 1100 square meters of laboratory space, and over 3750 square meters of office, storage, and technical space. The new cleanroom of Coherent LaserSystems is scheduled to be completed in December 2025 and will meet the very demanding ISO Level 6 classification requirements.

In the laser industry, clean rooms have special requirements for particle sensitive components, and even the smallest particle deviation can have a significant impact on product quality and function.

Maximilian Busch, Sales and Engineering Director of the Building Technology Business Unit at ENGIE Germany, said, "Cleanrooms have special requirements in terms of personal, product, and environmental protection. Our ENGIE Germany company is very proud to have achieved a perfectly coordinated concept for Coherent LaserSystems, meeting the cleanliness requirements of production while also setting new standards for cost-effectiveness and sustainability of cleanrooms."

To achieve the high standard cleanliness requirements of ISO 6, the ENGIE expert team will use their own top components and filter units. In addition, the new facilities also focus on energy efficiency. Germany's ENGIE will install a photovoltaic system with a peak output of 230 kilowatts on the roof of the building, achieving complete electricity supply from renewable energy. Meanwhile, the environmentally friendly heat recovery technology provided by sister company ENGIE Refrigeration will provide cooling supply for two water-cooled quantum refrigeration machines, with a total cooling capacity of 2 megawatts, and meet all heating needs of the building.

Busch concluded, "In the new cleanroom of Coherent LaserSystems, we have successfully combined the highest standards of functionality, sustainability, and the right concepts to demonstrate outstanding performance even in sensitive environments. This not only sets an example for the entire industry, but also fulfills our ENGIE proposition of accompanying customers towards climate neutrality in the best way possible."

ENGIE Germany has over 30 years of rich experience in clean room technology, and this collaboration with Coherent LaserSystems once again proves its outstanding strength in demanding industries such as optics, laser technology, pharmaceuticals, biotechnology, chemicals, plastics, and automobiles.
Fraunhofer IZM-ASSID is installing the EVG 850 DB fully automatic UV laser debonding and cleaning system at its Advanced CMOS and Heterogeneous Integrated Saxony Center (CEASAX) located in Dresden, Germany. It is reported that the EVG850 DB fully automatic ultraviolet laser debonding and cleaning system can achieve high-throughput and low-cost room temperature debonding for ultra-thin and stacked fan-shaped packaging. It integrates solid-state ultraviolet lasers and proprietary beam shaping optical devices to achieve optimized powerless carrier emission.

Fraunhofer IZM-ASSID is a leading research and development partner in the field of heterogeneous 3D wafer level system integration, capable of implementing 3D intelligent systems. It has a fully equipped 300mm wafer production line for advanced wafer level packaging, ISO certified, and provides industrial compatible process equipment for processing 200mm and 300mm wafers. On this basis, Fraunhofer IZM Dresden factory provides customers with process and technology development through prototype production and small batch production.

EV Group is a leading supplier of manufacturing equipment and process solutions for semiconductors, microelectromechanical systems (MEMS), compound semiconductors, power devices, and nanotechnology devices. The main products include wafer bonding, thin wafer processing, lithography/nanoimprint lithography (NIL) and metrology equipment, as well as photoresist coating machines, cleaning machines, and detection systems.
Temporary wafer bonding is a widely used method to ensure the processing of thin wafers (silicon thickness below 100 microns), which is crucial for 3D ICs, power devices, and Fan Out Wafer Level Packaging (FOWLP), as well as handling fragile substrates such as compound semiconductors.

The debonding of the carrier wafer is a necessary step in preparing the device wafer, in order to separate and integrate the mold into the final device or application. Fraunhofer IZM-ASSID can complete these debonding processes completely on its own using EVG850 DB, greatly reducing the development time of the optimal process flow for various adhesive systems. On the contrary, this will enable Fraunhofer IZM-ASSID to customize processes according to the specific needs of numerous customers.

Source: OFweek

相關推薦
  • Shanghai Institute of Optics and Fine Mechanics has made significant breakthroughs in the study of laser damage performance of mid infrared anti reflective coatings

    Recently, the Thin Film Optics Research and Development Center of the High Power Laser Component Technology and Engineering Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, collaborated with researchers from Hunan University and Shanghai University of Technology to make new progress in the study of laser damage performance of mid infrared anti reflect...

    04-07
    查看翻譯
  • Panacol showcases a new optical grade adhesive on Photonics West

    Panacol will showcase new optical grade resins and adhesives for embossing and optical bonding applications at the SPIE Photonics West exhibition held in San Francisco, California, USA from January 30 to February 1, 2024.These new adhesives can be used for sensors in lightweight carpets, smart devices, and wearable devices in the automotive industry, or for generating structured light in projector...

    2023-12-12
    查看翻譯
  • Changing Optical Design: How Multi scale Simulation Improves the Efficiency of Modern Devices

    Optical equipment is an integral part of technologies such as data centers and autonomous vehicle, which are constantly developing to meet the needs of complex applications. The challenge faced by designers is to manipulate light at the wavelength scale to achieve the required optical properties, which requires precision at both the nano and macro scales. Nanoscale structures, such as those on LED...

    2024-03-02
    查看翻譯
  • New type of metasurface with adjustable beam frequency and direction

    Recently, according to the journal Nature Nanotechnology, a team from the California Institute of Technology reported that they have constructed a metasurface covered with micro adjustable antennas that can reflect incident light beams: one beam of light enters and multiple beams of light exit, each with a different frequency and propagating in a different direction. This is a new method for proce...

    2024-07-30
    查看翻譯
  • Scientists have developed a palm sized femtosecond laser using a glass substrate

    Researchers at the Federal College of Technology in Lausanne (EPFL) have shown that femtosecond lasers suitable for palm size can be manufactured using glass substrates.Can femtosecond lasers made entirely of glass become a reality? This interesting question prompted Yves Bellouard, the head of the Galata laboratory at the Federal Institute of Technology in Lausanne, to embark on a journey after y...

    2023-10-04
    查看翻譯