繁体中文

Shanghai Optics and Fine Mechanics Institute has made progress in the new holographic imaging technology of frequency domain direct sampling

1192
2025-03-20 11:16:50
查看翻譯

Recently, a research team from the Aerospace Laser Technology and Systems Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a new holographic imaging technology using frequency domain direct sampling. The relevant results were published in Optics Letters under the title of "Fourier inspired single pixel holography".

Digital holography is a technique that uses interference to record information about the optical field. Among them, off-axis digital holography is widely used in imaging, measurement, display, storage and other fields due to its ability to eliminate the influence of twin images in principle. Traditional off-axis digital holography uses an array detector to record holograms, and then selects the frequency spectrum related to the target light field. This imaging method records both the target image and redundant zero order images and twin images. In addition, due to the difficulty in preparing wide spectrum, high sensitivity, and high spatiotemporal resolution area array detectors, off-axis digital holography technology is also difficult to apply under extreme conditions such as special bands and low light.

This study is based on the mechanism of off-axis holography to separate redundant information in the spectral domain, combined with the characteristic of Fourier single pixel imaging technology that can obtain object spectra on demand. The hologram is encoded using a specific frequency stripe pattern, and the Fourier spectrum of the target light field is directly sampled by a high-sensitivity single pixel detector. Finally, the target light field information is obtained through inverse Fourier transform (Figure 1a, b). In addition, the research team intelligently designed encoding patterns and image enhancement models based on self coding architecture (Figure 1c), and used transfer learning techniques to reduce the required experimental data volume (Figure 1d). In the end, the research team successfully achieved imaging of phase type objects at a maximum sampling rate of 7.5% (Figure 2). This study combines holography, correlation imaging, and artificial intelligence organically, providing new ideas for efficient phase detection in special bands and low light conditions. It is expected to be applied in fields such as scattering imaging and low light imaging.

Figure 1. (a) Off axis hologram generation process; (b) The process of modulating off-axis holograms using learned mask selection patterns and reconstructing objects; (c) The joint optimization network structure used for pre training; (d) Fine tuning process using experimental data.

Figure 2. (a) Experimental setup diagram; (b) The original experimental results at different sampling rates and the experimental results processed by neural networks; (c) Phase truth, phase comparison of network input and network output objects at a sampling rate of 7.5%.

Source: opticsky

相關推薦
  • Progress in the study of ultrafast electron dynamics using short light pulses

    When electrons move in molecules or semiconductors, their time scale is unimaginably short. The Swedish German team, including Dr. Jan Vogelsang from the University of Oldenburg, has made significant progress in these ultrafast processes: researchers are able to track the dynamics of electrons released on the surface of zinc oxide crystals using laser pulses with nanoscale spatial resolution and p...

    2024-01-08
    查看翻譯
  • Researchers are studying lasers for controlling magnetic ripple interactions

    One vision for computing the future is to use ripples in magnetic fields as the fundamental mechanism. In this application, magnetic oscillators can be comparable to electricity and serve as the foundation of electronic products.In traditional digital technology, this magnetic system is expected to be much faster than today's technology, from laptops and smartphones to telecommunications. In quant...

    2024-02-11
    查看翻譯
  • How to choose between continuous and pulsed fiber lasers?

    Fiber laser, with its simple structure, low cost, high electro-optical conversion efficiency, and good output effect, has been increasing in proportion in industrial lasers year by year. According to statistics, fiber lasers accounted for 52.7% of the industrial laser market in 2020.According to the characteristics of the output beam, fiber lasers can be classified into two categories: continuous ...

    2023-12-20
    查看翻譯
  • Laser induced magnetic generation of non-magnetic materials at room temperature helps to develop faster and more energy-efficient information transmission and storage technologies

    Researchers from the University of Stockholm in Sweden, the Nordic Institute for Theoretical Physics, and the University of Cafoscari in Venice, Italy have successfully demonstrated for the first time how lasers induce quantum behavior at room temperature and make non-magnetic materials magnetic. This breakthrough is expected to pave the way for faster and more energy-efficient computers, informat...

    2024-06-03
    查看翻譯
  • Lawrence Livermore National Laboratory develops PW grade thulium laser in the United States

    Recently, according to Tom's Hardware, Lawrence Livermore National Laboratory (LLNL) in the United States is developing a PW (1015 W) level large aperture thulium (BAT) laser. It is reported that this laser has the ability to increase the efficiency of extreme ultraviolet lithography (EUV) light sources by about 10 times, and may potentially replace the carbon dioxide laser used in current EUV too...

    02-13
    查看翻譯