繁体中文

Wearable Breakthrough! A rubber like deformable energy storage device using laser precision manufacturing

776
2024-04-26 15:50:05
查看翻譯

Recently, foreign researchers have made remarkable breakthroughs in the field of flexible energy storage devices, successfully developing a small energy storage device that can stretch, twist, fold, and wrinkle freely. This significant achievement has been published in the journal npj Flexible Electronics.

With the booming development of wearable technology, the demand for energy storage solutions that can adapt to the flexibility and stretchability of soft electronic devices is becoming increasingly urgent. Micro supercapacitors (MSCs) have become a highly promising deformable energy storage material due to their high power density, fast charging, and long cycle life.

However, the brittleness of traditional electrode materials such as gold (Au) poses a significant challenge in manufacturing cross electrode modes that can maintain stable performance through repeated stretching and twisting. At the same time, although eutectic gallium indium liquid metal (EGaIn) has attracted attention for its high conductivity and excellent deformability, its extremely high surface tension makes fine patterning operations exceptionally difficult.

Faced with these challenges, the research team demonstrated extraordinary innovative spirit. They cleverly utilized laser technology to accurately depict the fine patterns of EGaIn and graphene (as active materials) on stretchable polystyrene block copolymer (SEBS) substrates.

During the laser ablation process, the underlying SEBS substrate is intact and undamaged, ensuring the flexibility and durability of MSC devices. Excitingly, the surface capacitance of this new MSC can still maintain its original value after undergoing up to 1000 stretching cycles. What is even more remarkable is that these prepared MSCs can maintain stable operation under various mechanical deformations, such as stretching, folding, twisting, and wrinkling.

The research team brought together several outstanding scientists, including Professor Jin Kon Kim and Dr. Keon Woo Kim from the Department of Chemical Engineering at POSTECH, as well as Dr. Yang Chanwoo and Researcher Seong Ju Park from the Korea Institute of Industrial Technology (KITECH). Their joint efforts and wisdom have injected new vitality into the development of flexible energy storage.

Professor Jin Kon Kim is confident in this achievement, stating, "The application of laser patterned liquid metal electrodes marks an important step in the development of truly deformable energy storage solutions. With the continuous advancement of wearable technology, such innovation will play a crucial role in ensuring that our devices can adapt to dynamic lifestyles. We look forward to this technology bringing more convenient and efficient energy storage experiences to future wearable devices."

Source: OFweek

相關推薦
  • Additive manufacturing of free-form optical devices for space use

    A group of researchers and companies are using the iLAuNCH Trailblazer program to develop and identify new optical manufacturing processes and materials for space flight applications, and demonstrating them in space cameras.The University of South Australia, together with SMR Australia and VPG Innovation, will utilize an emerging optical manufacturing technology called freeform optics, which is no...

    2023-12-04
    查看翻譯
  • Laser additive manufacturing: monitoring during defect occurrence

    Researchers at the Federal Institute of Technology in Lausanne have resolved the long-standing debate surrounding laser additive manufacturing processes through a groundbreaking defect detection method.The development of laser additive manufacturing is often hindered by unexpected defects. Traditional monitoring methods, such as thermal imaging and machine learning algorithms, have shown significa...

    2023-12-06
    查看翻譯
  • Strengthening the market position: LILA integrates ADAM Lasertechnik

    Laser Integration Laser Applikation (LILA) GmbH is taking over ADAM Lasertechnik on April 1, 2025 and will continue to run the company as part of an external succession plan. This means that not only the expertise but also the proven technology of 3D laser welding with wire feed will be retained.“We are delighted to have found an industry-experienced partner in LILA GmbH, who will continue the bus...

    03-13
    查看翻譯
  • Laser engraving: Researchers have created a revolutionary technology

    Recently, a group of researchers from the University of Cambridge developed an innovative method of using high-energy lasers to improve 3D printing of metals. This discovery has the potential to change the way we design and manufacture complex metal objects.3D printing has completely changed the landscape of the manufacturing industry. However, it faces obstacles, especially in terms of the charac...

    2023-11-24
    查看翻譯
  • The Institute of Physics, Chinese Academy of Sciences has made significant progress in the research of lithium niobate nanooptics

    In recent years, breakthroughs in the preparation technology of lithium niobate single crystal thin films have greatly promoted the important application of lithium niobate crystals in micro nano optical devices such as optical metasurfaces. However, the high hardness and inactive chemical properties of lithium niobate crystals pose significant challenges to micro nano processing; In addition, con...

    04-15
    查看翻譯