繁体中文

BLM Group launches a new LT12 laser tube cutting system

654
2024-04-18 16:21:10
查看翻譯

Recently, BLM Group in the United States has launched a new LT12 laser tube system, which performs well in cutting light and heavy pipes and profiles, and can handle materials with a diameter of up to 305 millimeters.

According to the company, compared to other similar machines, the LT12 laser tube system reduces cutting time by up to 55% when cutting materials with the same maximum diameter, significantly improving work efficiency.

It is worth mentioning that this machine does not require special basic installation, and its design is unique. It uses a slender 3D cutting head, which can easily handle the cutting needs of special parts and beams. The machine is equipped with a 3, 4, or 5 kW laser source and integrates built-in sensors to monitor optical parameters in real-time during operation, ensuring cutting accuracy and stability. In addition, the manufacturer emphasizes that the Active Tools library of the LT12 laser tube system can effectively improve the operational efficiency and user experience of operators.

In terms of unloading, the characteristic of this machine is its conveyor belt design, which can efficiently handle shorter parts and process longer parts in stages through the unloading chain. The operator can easily configure the short part conveyor to unload the parts into the Flat noodles to realize the buffering function. At the same time, the waste conveyor is responsible for transporting the waste to the bin on the back of the machine, maintaining a clean working environment.

Finally, the LT12 laser tube system is also equipped with an active scanning function, which can automatically correct the geometric shape positioning on the cutting tube and flexibly adjust the cutting errors caused by pipe deformation, ensuring that every cutting can achieve accurate and error free results.

Source: OFweek

相關推薦
  • Munich Shanghai Light Expo and Light Academic Publishing Center further strengthen cooperation

    In November 2024, based on the mutual trust and cooperation over the past years, the Munich Shanghai Optical Expo and the Light Academic Publishing Center of the Changchun Institute of Optics, Precision Mechanics and Physics, Chinese Academy of Sciences (hereinafter referred to as the "Light Center") reached a consensus on further strategic development as they ushered in the year of disruptive sci...

    2024-12-05
    查看翻譯
  • Researchers use laser doping to enhance the oxidation of IBC solar cells

    Researchers from the International Solar Research Center at Konstanz and Delft University of Technology have discovered a method to pattern the back end of a cross finger rear contact battery, improving its efficiency by making certain parts of the solar cell thicker.Researchers have developed a new technology that enhances oxidation in selected areas by patterning the back or back of IBC solar ce...

    2024-02-20
    查看翻譯
  • Jena Helmholtz Institute Using Air Deflection Laser Beam

    A novel method is used to deflect the laser beam using only air. The interdisciplinary research team reported in the journal Nature Photonics that invisible gratings made solely of air not only do not suffer damage from lasers, but also retain the original quality of the beam. The researchers have applied for a patent for their method.Technology and PrinciplesThis innovative technology utilizes so...

    2023-10-07
    查看翻譯
  • Professor Wu Dong's team at the University of Science and Technology of China created a "dancing microrobot" using femtosecond laser composite materials.

    It was learned from the University of Science and Technology of China that the team of Professor Wu Dong of the Micro and Nano Engineering Laboratory of the school proposed a femtosecond laser two-in-one multi-material processing strategy, manufactured a micromechanical joint composed of temperature-sensitive hydrogel and metal nanoparticles, and then developed a multi-joint humanoid micromachine ...

    2023-08-11
    查看翻譯
  • Widely tunable terahertz laser enhances photo induced superconductivity in K3C60

    Researchers at the Max Planck Institute for Material Structure and Dynamics (MPSD) in Hamburg, Germany, have long been exploring the effect of using custom laser drivers to manipulate the properties of quantum materials to deviate from equilibrium states.One of the most eye-catching demonstrations of these physics is unconventional superconductors, where enhanced electron coherence and super trans...

    2023-10-13
    查看翻譯