繁体中文

Implementing and studying non Hermitian topological physics using mode-locked lasers

526
2024-03-27 16:30:29
查看翻譯

A mode-locked laser is an advanced laser that can generate very short optical pulses with durations ranging from femtoseconds to picoseconds. These lasers are widely used for studying ultrafast and nonlinear optical phenomena, but they have also been proven to be applicable to various technological applications.

Researchers at the California Institute of Technology have recently been exploring the potential of mode-locked lasers as a platform for studying topological phenomena. Their paper was published in the journal Nature Physics, outlining the potential of these lasers in the study and implementation of new non Hermitian topological physics, with various potential applications.

"In the past decade, the idea of utilizing the topological robustness and topological protection of photonic devices has attracted widespread attention, but it is still unclear whether this behavior can provide substantial practical benefits," the main author of the paper, Alireza Marandi, told Phys.org.

We have been exploring this issue, especially for lasers and nonlinear photonic devices, whose functions are essentially nonlinear. By the way, the field of topological physics is also developing around the interaction between topology and nonlinearity, and there are relatively few experimental platforms for such exploration.

Marandi and his colleagues have recently pursued a dual goal in their research. On the one hand, they hope to open up new opportunities for studying nonlinear topological behavior, and on the other hand, they hope to broaden the practical applications of topological physics in mode-locked lasers.

"From an experimental perspective, our platform is a time multiplexed resonator network consisting of many synchronous pulses from long resonators," Marandi explained. Pulses can be coupled to each other in a controllable manner using precise delay lines. This allows us to create a programmable network of large-scale resonators with great flexibility. This is not easy on other platforms.

In an earlier paper published in 2022, researchers explored topological phenomena in large-scale photonic resonators, but particularly in linear states. As part of their new research, they used the same resonator to achieve coupled mode-locked lasers.

The team indicates that the pulse patterns generated by these lasers can benefit from non Hermitian and topological phenomena. Essentially, they created a long cavity, multi pulse, mode-locked laser and introduced a junction inside it.

"The flexibility of our experimental method enables us to study the intersection of topology and laser mode locking, and to achieve non Hermitian topological physics that has not been previously proven in photon systems," Marandi said.

For example, we found that the synergistic effect between non Hermitian topological structures and the nonlinear dynamics of our system spontaneously generates skin patterns in our mode-locked laser. This is in stark contrast to linear non Hermitian topological systems, where external sources must be used to detect skin patterns.

Marandi and his collaborators recently demonstrated the potential of mode-locked lasers in studying topological physics, which has been difficult to obtain experimentally so far. In addition, their research can stimulate mode-locked lasers for the development of new sensing, computing, and communication technologies.

In addition, in their experiment, researchers used their developed laser to confirm the robustness of the mathematical model used to study the behavior of randomly moving particles to the localization induced by disorder. Although this model has been extensively studied before, it has not yet been proven on a mode-locked photon platform.

"In terms of this understanding, we further explored the robustness of the Hatano Nelson model to disorderly induced localization and how it can design robust frequency comb sources," Marandi said. Usually, this robustness to something is followed by sensitivity to other things.
In their next study, Marandi and his colleagues will attempt to use their method to explore the use of the Hatano Nelson model as a sensor with enhanced sensitivity. In addition, they hope that their research can inspire other teams to try using mode-locked lasers to study topological physical phenomena.

"We also believe that our platform can become a fertile ground for exploring a large number of difficult to obtain nonlinear topologies and non Hermitian phenomena," Marandi added. An example that interests us is the interaction between soliton formation and topological behavior.

Source: Laser Net

相關推薦
  • Cambridge University researchers use lasers to "heat and strike" 3D printed steel

    According to the University of Cambridge, researchers have developed a new method for 3D printing metal, which can help reduce costs and more effectively utilize resources. This method, developed by a research team led by the University of Cambridge, allows structural modifications to be "programmed" into metal alloys during 3D printing - fine-tuning their performance without the need for thousand...

    2023-11-03
    查看翻譯
  • What are the "unique secrets" of each family in terms of breaking the game and high reaction materials?

    Laser is considered a sharp sword that cuts iron like mud, but even sharper swords can have tricky moments. For example, in certain scenarios, there are materials with higher reflectivity, such as silver, copper, etc., known as "high reflection materials". High reflective materials have a low absorption rate for lasers, making them difficult to process and potentially causing equipment failure or ...

    2023-11-06
    查看翻譯
  • Zhongke Yuchen laser welding technology opens up vast space for the welding process of new energy vehicle motors

    The application of laser welding technology in the welding process of new energy vehicle motors is a typical example of Zhongke Yuchen in many welding cases. The main accessories of the automatic laser welding equipment for new energy vehicle motors are imported products, and the welding process is mature and stable.Motor rotorMotor statorLaser welding of motor stator tapThe circumferential wel...

    2023-10-18
    查看翻譯
  • Hamamatsu Photonics completes construction of new factory area

    Recently, Hamamatsu Photonics in Japan completed the construction of a new building at Miyakoda Manufacturing Co., Ltd. in Hamami ku, Hamamatsu City. The completion ceremony was held on July 29th, and the factory will start full production in November 2024, increasing overall production capacity by 2.5 times.Source: Hamamatsu PhotonicsIt is reported that Hamamatsu Photonics focuses on the developm...

    2024-08-01
    查看翻譯
  • BluGlass received its first order α GaN DFB laser

    Global semiconductor developer BluGlass Limited has received its first α Purchase order for gallium nitride distributed feedback laser.This client is a pioneer in photon and fiber laser technology and will use BluGlass's blue prototype DFB laser to develop cutting-edge defense, aviation, and scientific applications.Quantum sensing, navigation, and computing applications are driving a huge de...

    2024-01-10
    查看翻譯