繁体中文

Tower Semiconductor is preparing to add laser integrated PIC for Scintil

896
2024-02-29 14:59:58
查看翻譯

Grenoble stated that in the context of growing demand driven by artificial intelligence and 5G, "key" milestones have strengthened its supply chain.

Scantil Photonics, a subsidiary of CEA Leti that focuses on silicon photonics, has stated that its integrated laser design is now being produced by Tower Semiconductor, a wafer foundry partner.

This method describes this development as a "crucial step forward" that can combine distributed feedback lasers with photonic integrated circuits for high-speed optical communication applications.

Scintil's proprietary PIC is said to enable single-chip integration of lasers and amplifiers, thereby improving performance, speed, reliability, and density at low power consumption in data centers that support 5G connectivity and artificial intelligence computing needs.

These designs are currently being manufactured using Tower's large-scale "PH18M" silicon photonics foundry process based in Israel, which also features low loss waveguides, photodetectors, and modulators. Wafers with a diameter of 200 millimeters are produced at Tower's manufacturing plant located in Newport Beach, California.

Scintil's technology integrates DFB lasers and amplifiers on a single chip on the back of the wafer, and customer testing of PIC shows strong performance without the need for sealed packaging.

CEO Silvi Menezzo founded the Grenoble startup and previously led CEA Leti's Silicon Photonics Laboratory. He stated that this development represents an important milestone.

"We are pleased to emphasize our collaboration with Tower Semiconductor, a leading global wafer foundry," she commented. Due to our long-term cooperation, we have the ability to provide laser enhanced silicon photonic ICs, redefining integration, performance, and scalability.
This will enable Scintil to conduct large-scale production to meet market demand. In addition, our technology demonstrates extraordinary opportunities to accommodate the integration of more materials, such as quantum dots and lithium niobate materials.

The $7 billion transceiver market is expected to see rapid growth in demand for silicon photonics based optical transceivers in the coming years
The research company LightCounting predicts a compound annual growth rate of 24% by 2025, with a total potential market value of at least $7 billion.

Edward Preisler, Vice President and General Manager of Tower's RF Business Unit, added, "We are pleased to support Scintil, a highly integrated solution that leverages Tower's mature production building modules.".

The integration of III-V family optical amplifiers and/or lasers aligns with Tower Semiconductor's commitment to bringing cutting-edge silicon photon technology to the market.

After Menezo spun off Scintil from CEA Leti Labs in 2018, he led the startup in two rounds of financing, including a € 13.5 million investment led by investor Robert Bosch Venture Capital in 2022.

Source: Laser Net

相關推薦
  • Oxford University develops technology for capturing strong laser pulses in one go

    Physicists at the University of Oxford have unveiled a “pioneering” method for capturing the full structure of ultra-intense laser pulses in a single measurement. The breakthrough, a collaboration with Ludwig-Maximilian University of Munich and the Max Planck Institute for Quantum Optics, could revolutionize the ability to control light-matter interactions, say the team.The Oxford announcement sta...

    07-07
    查看翻譯
  • What is field assisted additive manufacturing?

    Dr. Tan Chaolin from the Singapore Institute of Manufacturing Technology, in collaboration with China University of Petroleum, Shanghai Jiao Tong University, Princeton University, University of Malta, Huazhong University of Science and Technology (Professor Zhang Haiou), University of California, Irvine, Hunan University, and EPM Consulting, published an article titled "Review on Field Assisted Me...

    2024-07-29
    查看翻譯
  • Laser&Photonics Reviews New Type Quartz Crystal Space Harmonic Modulation for Efficient Vacuum UV Laser

    Professor Zhang Huaijin and Yu Haohai from the Institute of Crystal Materials of Shandong University (the State Key Laboratory of Crystal Materials) proposed a spatial harmonic modulation strategy, which realizes the phase matching conditions that can be manipulated artificially in the new quartz crystal, and realizes the effective frequency doubling within the VUV range. The relevant research is ...

    2023-08-30
    查看翻譯
  • The Science Island team has made breakthroughs in high pulse energy mid infrared fiber transmission

    Recently, the Jiang Haihe Research Group of the Health Institute of the Chinese Academy of Sciences Hefei Institute of Materia Medica made important progress in the research of the high-energy pulsed laser transmission system in the mid infrared band, and designed a 78 μ The 6-hole microstructure anti resonant hollow core fiber (AR-HCF) with a larger core diameter achieved efficient transmissio...

    2024-03-23
    查看翻譯
  • Linear Pluggable Optical Device Alliance Definition Linear Pluggable Optical Device Specification

    A group of network, semiconductor, and optical companies formed the LPO MSA to develop the network equipment and optical module specifications required to implement a wide ecosystem of interoperable LPO solutions.These specifications address the industry challenges of reducing power consumption, cost, and latency while improving the reliability of high-speed optical interconnections.Accelink, AMD...

    2024-03-26
    查看翻譯