繁体中文

What is field assisted additive manufacturing?

490
2024-07-29 14:03:17
查看翻譯

Dr. Tan Chaolin from the Singapore Institute of Manufacturing Technology, in collaboration with China University of Petroleum, Shanghai Jiao Tong University, Princeton University, University of Malta, Huazhong University of Science and Technology (Professor Zhang Haiou), University of California, Irvine, Hunan University, and EPM Consulting, published an article titled "Review on Field Assisted Metal Additive Manufacturing" in the top manufacturing journal, International Journal of Machine Tools and Manufacturing. The Singapore Institute of Manufacturing Technology, Shanghai Jiao Tong University, and Princeton University are the corresponding author units.

This' super team 'elaborates on the current progress of field assisted additive manufacturing technology, reveals the interaction mechanism between fields and deposited metal materials, summarizes the correlation between auxiliary fields, microstructures, and mechanical properties, and looks forward to research opportunities in field assisted additive manufacturing.

Overview of Various Types of Field Assisted Additive Manufacturing (FAAM) Technologies

Field assisted additive manufacturing
Additive manufacturing technology provides unprecedented design freedom and manufacturing flexibility for processing complex components. It can manufacture parts that cannot be manufactured by other processes while minimizing processing steps. Typical metal additive manufacturing processes include laser powder bed melting (LPBF), laser energy deposition (LDED), electron beam melting (EBM), and arc additive manufacturing (WAAM), each with their own metallurgical characteristics, advantages, and applicability. The construction speed of LPBF is relatively low, but it has excellent capabilities in handling complex geometric shapes, such as lattice structures, advanced tools (such as mold inserts with conformal cooling channels), customized medical implants, etc; In contrast, LDED and WAAM have lower dimensional resolution and much higher deposition rates than LPBF, making them suitable for large-scale component manufacturing. In addition, the flexibility of material feed in LDED and WAAM has increased, allowing for the deposition of multiple materials within the same layer and across layers. The flexible tool path in LDED can repair large free-form surface parts.

Field assisted typical metal additive manufacturing technology
Therefore, although these technologies have numerous advantages compared to traditional manufacturing methods, there are still some problems and bottlenecks that hinder their large-scale industrial applications. For example, materials with poor printing adaptability may have defects, resulting in larger columnar dendrites with poor anisotropic mechanical and fatigue properties. In order to address these issues and fully leverage the potential of additive manufacturing technology, new methods have been studied for customizing microstructures, innovating equipment and devices, and introducing new concepts. Field assisted additive manufacturing (FAAM) is a new approach that combines the inherent advantages of different energy fields to overcome the limitations of additive manufacturing. Typical auxiliary fields applied in additive manufacturing processes include magnetic field, acoustic field, mechanical field, and thermal field. In addition, there are some emerging technologies such as plasma field, electric field, and coupled multi field as auxiliary energy fields.

The mechanism and advantages of field assisted additive manufacturing
Professor Tan Chaolin's research team has reviewed how the current mainstream magnetic field, acoustic, mechanical, thermal, electrical, and plasma field assisted technologies affect the metal additive manufacturing process. They believe that the assisted fields can affect the convection and dynamics of the melt pool, alter the temperature distribution and thermal history during material solidification, and cause stress or plastic deformation in deposited materials; A detailed review and discussion were conducted on how auxiliary fields affect melt pool dynamics, solidification dynamics, densification behavior, microstructure and texture, mechanical properties, and fatigue performance; We also discussed the research gap and further development trends of field assisted additive manufacturing.

Schematic diagram of using magnetic field assisted additive manufacturing


Schematic diagram of using sound field assisted additive manufacturing


Schematic diagram of using thermal field assisted additive manufacturing


Schematic diagram of using mechanical deformation assisted additive manufacturing

This critical review provides researchers with complete and up-to-date information on field assisted additive manufacturing, which helps to identify the shortcomings and advantages of each field assisted technology and improve maturity and technological readiness.

Field assisted additive manufacturing is expected to have high flexibility in handling high geometric complexity components and good scalability in depositing large or small free-form components. This poses a high challenge for process and system development as it requires a uniform field distribution. The breakthrough of uniform field distribution will improve the flexibility and scalability of field assisted technology, and make its application mature and scalable.

The certification and commercialization of field assisted additive manufacturing systems is another direction of progress, as most of the current field assisted additive manufacturing equipment is experimental and lacks strict testing and certification. The laboratory stage technology may have stability and repeatability issues, which are insufficient to handle reliable industrial products. Therefore, strict system certification is required to commercialize field assisted technology. At the same time, it is necessary to develop and compile system qualification standards to guide and certify qualifications for commercial use. Reliable commercial equipment will attract more researchers to advance and implement field assisted technologies in industrial applications.

Source: AM union Additive Manufacturing Master's and PhD Alliance

相關推薦
  • ComNav Technologies introduces Mars Pro Laser RTK

    ComNav Technology Ltd. has introduced the Mars Pro Laser RTK, the latest addition to its Universe series GNSS receiver product line, which includes the Venus Laser RTK and Mars Laser RTK. The GNSS receiver is suitable for the land surveying, GIS and construction industries with its innovative features.Mars Pro's laser mode facilitates the use of conventional GNSS receivers in areas where signals a...

    2023-09-13
    查看翻譯
  • Overview of Inconel 939 Alloy Parts Developed by Additive Manufacturing Process

    The related paper was published in Heliyon under the title "A systematic review of Inconel 939 alloy parts development via additive manufacturing process".IN939 is a modern nickel based high-temperature alloy that can work continuously at high temperatures due to its excellent fatigue resistance, creep resistance, and corrosion resistance. The unique performance of IN939 is related to the composit...

    2024-12-10
    查看翻譯
  • Overview of Residual Stress in Metal Additive Manufacturing: Detection Techniques, Numerical Simulation, and Mitigation Strategies

    Researchers from Shantou University have reported a review of residual stresses in metal additive manufacturing: detection techniques, numerical simulations, and mitigation strategies. The relevant paper titled "A comprehensive review of residual stress in metal additive manufacturing: detection techniques, numerical simulations, and mitigation strategies" was published in the Journal of the Brazi...

    2024-12-20
    查看翻譯
  • In depth understanding of the formation of condensation rings in laser spot welding - machine learning and molecular dynamics simulation

    Researchers from the Pacific Northwest National Laboratory and Johns Hopkins University have reported that machine learning and molecular dynamics simulations can help to gain a deeper understanding of the formation of condensation rings in laser spot welding. The related paper titled 'Machine learning and molecular dynamics simulations aided insights into conditioned ring formation in laser spot ...

    2024-12-21
    查看翻譯
  • Laser technology reveals hidden gases in complex mixtures

    Laser Network reported on January 11th that modern equipment has been fine tuned to detect highly specific gases, including trace gases found in the atmosphere, gases present in combustion exhaust emissions, and gases used in technology plasma applications.They achieve this by calculating the percentage of light at a certain wavelength that is absorbed or attenuated by the sample. This way, the co...

    2024-01-11
    查看翻譯