繁体中文

The visual LiDAR fusion calibration board improves the detection accuracy of the vehicle navigation system and does not need to be adjusted before sailing

555
2023-08-23 14:12:19
查看翻譯
At present, the navigation system has become an important equipment on ships, aircraft, missiles, automobiles and other navigational vehicles. Laser Doppler radar has become an important development direction in the field of velocity measurement technology because of its high accuracy, good spatial resolution and fast dynamic response.
 
The application of the three-beam Doppler Lidar in the vehicle navigation system can continuously measure the navigation parameters of the vehicle relative to the ground, such as three-dimensional axial speed and instantaneous position, and realize the autonomous navigation, and it does not need to be adjusted before sailing, and it is simple and convenient to use.

With the continuous improvement of the detection performance of multi-beam radar such as SNR and velocity sensitivity in engineering applications, more in-depth research on beam configuration is needed. The vehicle-mounted three-beam Doppler Lidar beam is illuminated by a combined transceiver antenna. Whether direct detection or coherent detection is used, it is desirable to obtain a large echo signal intensity.
 
However, in the actual measurement process, the intensity of the echo signal is greatly attenuated because of light scattering on the rough surface. The bidirectional reflection distribution function (BRDF) of a rough surface can describe not only the optical radiation properties of the surface, but also the directional scattering properties.

Three beam Doppler Lidar uses continuous wave laser for optical mixing (homodyne detection) measurement. After the signal light transmitted by liDAR in the atmosphere, the echo signal and the local oscillator signal of the system generate the difference frequency signal through the optical mixer. When the local oscillator frequency is equal to the emitted laser frequency, the difference frequency is the Doppler shift of the echo signal.

When the three-beam laser illuminates the ground at an oblique Angle, the different beam illumination Angle will cause the different working distance of the beam, which will affect the signal-to-noise ratio of the system. If the installation height of the three-beam antenna is H, the working distance of the beam is R=H/sinα. The SNR of the system monotonically increases with the increase of the remaining zenith Angle. When the signal-to-noise ratio of coherent laser radar is higher than 8dB, the estimated maximum likelihood reaches the Kramerlau lower bound (CRLB).

When the system hardware parameters and algorithms are selected, the sensitivity of velocity measurement is only related to the zenith Angle and decreases with the increase of the zenith Angle. Speed measurement sensitivity can not be too small, otherwise the instrument will fail to respond to the operating speed, usually need to give the practical application of speed measurement sensitivity or can be converted to the index requirements.

Hangxin photoelectric laser radar calibration plate has good stability and can obtain repeated accurate data. Suitable for automatic driving distance, identification testing and remote sensing targets and other fields, the reflectivity is 1-99% optional, does not drop powder and does not change yellow, with nearly perfect Lambert characteristics. Hangxin photoelectric diffuse reflector adopts exclusive spraying process, which can provide a variety of reflectivity splicing diffuse reflector for seamless splicing.

Source: Sohu
相關推薦
  • Real time measurement of femtosecond dynamics of relativistic intense laser driven ultra-hot electron beams

    In the interaction between ultra short and ultra strong lasers and matter, short pulse width and high energy electrons are generated, commonly referred to as "hot electrons". The generation and transport of hot electrons is one of the important fundamental issues in high-energy density physics of lasers. Superhot electrons can excite ultrafast electromagnetic radiation in a wide range of wavelengt...

    2024-06-21
    查看翻譯
  • Progress in the study of ultrafast electron dynamics using short light pulses

    When electrons move in molecules or semiconductors, their time scale is unimaginably short. The Swedish German team, including Dr. Jan Vogelsang from the University of Oldenburg, has made significant progress in these ultrafast processes: researchers are able to track the dynamics of electrons released on the surface of zinc oxide crystals using laser pulses with nanoscale spatial resolution and p...

    2024-01-08
    查看翻譯
  • Micro laser opens the door to chip size sensors

    The new device is a frequency comb - a special type of laser that can generate multiple wavelengths of light, each with a fixed frequency interval. On the spectrogram, it looks a bit like the teeth of a comb. In approximately a quarter century since their first development, these "cursor rulers" have completely transformed various high-precision measurements from timing to molecular detection. In ...

    2024-03-13
    查看翻譯
  • New type of metasurface with adjustable beam frequency and direction

    Recently, according to the journal Nature Nanotechnology, a team from the California Institute of Technology reported that they have constructed a metasurface covered with micro adjustable antennas that can reflect incident light beams: one beam of light enters and multiple beams of light exit, each with a different frequency and propagating in a different direction. This is a new method for proce...

    2024-07-30
    查看翻譯
  • Korean laser company AP Systems establishes new AVP equipment division

    Recently, AP Systems, a well-known laser manufacturer in South Korea, established a new AVP equipment division for the advanced packaging field. This business unit will focus on laser equipment required for advanced packaging processes of high bandwidth memory (HBM).AP Systems is a subsidiary of APS Group, mainly focused on the fields of display and semiconductor laser processing equipment. It foc...

    01-15
    查看翻譯