繁体中文

Germany has developed direct laser welding technology to achieve adhesive free connection from fiber to chip

205
2023-08-22 14:51:18
查看翻譯

Recently, researchers and their partners from the Fraunhofer Institute for Reliability and Microstructure (IZM) in Germany announced the successful development of a laser welding technology that can efficiently fix optical fibers onto photonic integrated circuits (PICs) without the need for adhesive bonding.

This technology is developed in response to biophoton sensing technology, mainly utilizing a miniaturized photonic integrated circuit (PIC) system with highly stable fiber connections.

(Image source: Fraunhofer IZM)
In the past, adhesive was often used in fiber optic interconnections of photonic integrated circuits. However, in the long run, this solution will lead to the occurrence of optical degradation, ultimately resulting in optical transmission loss. The softness of the adhesive can cause the position of the component to change over time and create an interference point between the two layers of glass. As the adhesive ages, this can lead to signal attenuation and brittle connections.

Due to the different volumes of glass fiber and substrate, the heat capacity of the two parts to be joined is not equal, resulting in different heating and cooling behaviors. If there is no appropriate compensation for the difference, it may lead to deformation and cracks during the cooling process. To address this issue, the team used a separate adjustable laser to uniformly preheat the substrate, allowing the melting stage of the fiber and substrate to occur simultaneously.

The technology developed by this project is no longer limited to the experimental setup stage, and the system they developed is designed for industrial environments. The Fraunhofer Institute for Reliability and Microstructure (IZM) in Germany, in collaboration with Finicontec Service, implemented this technology process in automation systems and found that it has high repeatability and scalability. It is equipped with thermal process monitoring up to 1300 ℃, accurate to 1 μ M's positioning system, as well as imaging recognition process and control software.

The potential of high automation enables customers to use photonic integrated circuits (PICs) with maximum coupling efficiency. Industrial integration means a leap in the field of biophotonics applications, as well as quantum communication and high-performance photonics, "G ó mez said.

Source: OFweek

相關推薦
  • Sill Optics launches F-Theta lenses for photovoltaic applications

    The energy transformation has brought us global challenges. In this regard, renewable energy sources such as photovoltaic are crucial. The key to improving the efficiency of photovoltaic power generation is to improve the manufacturing process of solar cells. Laser material processing is used to weld individual batteries into modules, dope selective emitters, and remove very thin antireflective an...

    2023-11-22
    查看翻譯
  • Xinjiang Institute of Physical and Chemical Technology has established the largest database of computational nonlinear optical crystal materials to date

    Modern laser technology urgently requires nonlinear optical materials that can generate coherent light through second harmonic generation. However, only a small portion of the nonlinear optical properties of non centrosymmetric crystal materials have been experimentally or theoretically studied, and exploration for high-performance nonlinear optical crystal materials is still very limited.Recentl...

    2023-10-24
    查看翻譯
  • Blue Laser Fusion plans to commercialize nuclear fusion reactors using laser technology by 2030

    Recently, a start-up company co founded by Nobel laureate Hideyoshi Nakamura in San Francisco plans to commercialize nuclear fusion reactors using laser technology around 2030.Hideyoshi Nakamura won the 2014 Nobel Prize in Physics for inventing blue light-emitting diodes. He founded Blue Laser Fusion in Palo Alto, California in November 2022. Partners include Hiroaki Ohta, former CEO of drone manu...

    2023-08-21
    查看翻譯
  • Shanghai Optics and Machinery Institute has made progress in the research of new terahertz sources based on Yb lasers

    Recently, the State Key Laboratory of Intense Field Laser Physics of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made new progress in generating intense field terahertz waves based on Yb laser pumped organic crystals. The relevant research results were published in Applied Physics Letters under the title "Efficient strong field THz generation from DSTMS crys...

    2024-04-09
    查看翻譯
  • Yongxin Optics: Launch of the "Multimodal Nanoresolution Microscope" Project

    Recently, the launch and implementation plan demonstration meeting of the "Multimodal Nano Resolution Microscope" project led by Ningbo Yongxin Optics Co., Ltd. was successfully held in Ningbo. This is the fourth time Yongxin Optics has led a national key research and development plan project and received support, indicating that the company's ability to undertake national level technological rese...

    04-10
    查看翻譯