繁体中文

Polarization of Laser Writing Waveguides Controlled by Liquid Crystal

653
2024-03-13 10:59:23
查看翻譯

German researchers have developed a method for controlling and manipulating optical signals by embedding liquid crystal layers into waveguides created by direct laser writing. This work has produced devices capable of electro-optic control of polarization, which may open up possibilities for chip based devices and complex photonic circuits based on femtosecond write waveguides.

Researcher Alexandro Albertucci from Jena Friedrich Schiller University suggests that this progress may benefit other data intensive applications both inside and outside the data center.

Researchers combine two basic photon technologies by embedding a layer of liquid crystal inside the waveguide. When the light beam propagating inside the waveguide enters the liquid crystal layer, it will change the phase and polarization of the light when an electric field is applied. Then, the modified beam passes through the second part of the waveguide, propagating a beam with modulation characteristics. The fused silica waveguide comprises a tunable wave plate. Researchers demonstrated the complete modulation of light polarization at two visible light wavelengths using this system.

Alberucci said, "Our work paves the way for integrating new optical functions into the entire volume of a single glass chip, enabling compact 3D photonic integrated devices that were previously impossible to achieve. The unique 3D characteristics of femtosecond written waveguides can be used to create new spatial light modulators, where each pixel is individually addressed by a waveguide.".

Albertucci added that this technology can also be applied in the experimental implementation of dense optical neural networks.
Femtosecond lasers can be used to write waveguides deep into the material, rather than just writing waveguides on the surface like other methods, making it a promising method to maximize the number of waveguides on a single chip. This method involves focusing a strong laser beam inside a transparent material. When the optical intensity is high enough, the beam will change the material under illumination, resembling a pen with micrometer level accuracy.

"The most important drawback of using femtosecond laser writing technology to create waveguides is the difficulty in modulating the optical signals in these waveguides," said Alberucci. Due to the need for devices capable of controlling the transmission of signals in a complete communication network, our work explores new solutions to overcome this limitation.

Although the optical modulation of femtosecond laser writing into waveguides was previously achieved through local heating of waveguides, the use of liquid crystals, such as in recent works, can directly control polarization. Albertucci said that the benefits of this method include lower power consumption; Can independently handle individual waveguides in bulk; And reduce crosstalk between adjacent waveguides.

In addition, although the use of liquid crystals as modulators has become mature, this work helps to map the route for using liquid crystal properties as modulators in photonic devices embedded with waveguides throughout the entire volume, said Alberucci.

Researchers say that as this study is still a proof of concept, more work needs to be done before the technology is ready for practical application. For example, current devices modulate each waveguide in the same way. Therefore, the goal of the researchers is to achieve independent control of each waveguide.
This study was published in Optical Materials Express.

Source: Laser Net

相關推薦
  • 2Pi Optics has launched a new type of fisheye camera based on its so-called metasurface optics

    2Pi Optics has launched a new type of fisheye camera based on its so-called metasurface optics.The company plans to showcase this technology at the large-scale technology trade show CES 2024 in Las Vegas next week.This company, headquartered in Cambridge, Massachusetts, stated that it has created the world's leading high-resolution fisheye sensor based on optical superlens technology. This technol...

    2024-01-05
    查看翻譯
  • Laser communication is expected to completely change optical links

    Laser technology is becoming a game changer in the field of satellite communication (SATCOM), capable of creating ultra secure networks that can transmit large amounts of data at unprecedented speeds through satellite networks and constellations.With continuous progress, the industry is ready for growth and collaboration, seizing the untapped potential of disconnected populations. The ability to h...

    2023-09-20
    查看翻譯
  • Infinira launches an optical solution for 1.6 Tbps ICE-D data centers

    Infinira, an expert in optical network solutions, announced the launch of a high-speed data center optical transmission module based on single-chip indium phosphide (InP) photonic integrated circuit (PIC) technology. The company claims that the module will connect at a speed of 1.6 terabits per second (Tb/s), while reducing the cost and power consumption per bit.Yingfeilang stated that its data ce...

    2024-03-18
    查看翻譯
  • E-22 uncertainty optical frequency divider

    The time/frequency unit is the most accurate among the seven basic units, so many measurement studies that pursue ultra-high accuracy and sensitivity will be transformed into frequency measurements to achieve higher measurement accuracy and sensitivity. For example, by measuring the relative changes in the ratio of different atomic transition frequencies, ultralight dark matter can be detected or ...

    2024-02-27
    查看翻譯
  • Germany and the United States jointly build a $150 million laser equipment laboratory for studying inertial fusion energy and high energy density physics

    German laser Fusion developer Marvel Fusion said it will partner with Colorado State University (CSU) on a new $150 million laser equipment lab to study inertial fusion energy and high energy density physics."It will be home to one of the most powerful laser facilities in the world and an international center for laser fusion energy and high energy density physics research," the company said in a ...

    2023-08-10
    查看翻譯