繁体中文

German team develops and promotes laser technology for formable hybrid components

858
2023-08-16 14:52:32
查看翻譯

Scientists from the Hanover Laser Center (LZH) in Germany are studying two laser based processes for producing load adapted hybrid solid components.

From a transaction perspective, mixing semi-finished products can help save materials and production costs, but if the components that need to be replaced are made of expensive materials, these materials need to meet high requirements in future use, such as being particularly wear-resistant.

To meet these requirements, the SFB 1153 "Customized Forming" collaborative research center in Hannover, Germany is developing a new process chain for producing mixed solid components that adapt to loads, where semi-finished products are first connected together and then formed as a whole. During this process, the German Hanover Laser Center (LZH) conducted two laser based process studies.

Process 1: Ultrasonic assisted laser beam welding

LZH's metal connection and cutting team has stated that they can use ultrasonic assisted laser beam welding technology to produce crack free and formable semi-finished products. This is the first of the two new laser processes mentioned above, with the specific sub project being A03 "Ultrasonic assisted laser welding to generate formable mixed compounds".

Scientists have welded shafts made of various mixed compounds, such as steel steel or steel nickel, and developed corresponding processes. In this development process, their focus is on how to avoid cracks and which parameters during the welding process will affect quality characteristics, such as weld depth or weld reinforcement.

In the third funding period of the collaborative research center, the team hopes to ensure higher process stability by modulating laser power and developing process control to achieve repeatable and reliable quality in the production of semi-finished products. In addition, the mechanical stress in the components will be reduced through ultrasonic post-treatment.

Process 2: Laser deposition welding

ZH's machine and control team is researching new components with local load adaptation characteristics, which is related to the second laser process - the specific sub project is A04 "Spatial adaptability of material properties for forming parts using surfacing technology to produce gradient mixed components".

To this end, scientists use laser hot wire deposition welding, using a costly and high-strength material as a coating, specifically for areas where components withstand high loads during operation. A typical application of this process is the tooth side of gears, where the user can obtain high-quality hard coatings, and the performance of the coatings is influenced by the specific material selection.

Next, the team hopes to develop process monitoring for deposition welding quality assurance. To achieve this, it is necessary to use special sensor technology to measure the secondary radiation generated during the welding process and analyze it using machine learning methods, in order to predict the coating performance. The purpose of these operations is to perform non-destructive quality control on the coating during the process.

The work of the Hanover Laser Center (LZH) in Germany is part of the SFB 1153 collaborative research center on the process chain for producing hybrid high-performance components through customized molding. In addition, researchers from 9 research institutes at the School of Mechanical Engineering at Leibniz University in Hanover and the Hanover Comprehensive Production Research Institute are also collaborating with them to develop new process chains for producing hybrid components.

Source: OFweek

相關推薦
  • China has successfully developed the world's first 193 nanometer compact solid-state laser

    The Chinese Academy of Sciences reduced the volume of the deep ultraviolet laser by 90% and achieved 193 nm vortex beam output for the first time. Professor Xuan Hongwen described "loading truck equipment into the car trunk". This technology enables a 30% reduction in the size of lithography features, breaking through the bottleneck of the 2-nanometer process. In the next three years, laser power ...

    03-24
    查看翻譯
  • Natural Communication: Oxide Dispersion Enhancement for High Performance 3D Printing of Pure Copper

    The laser additive manufacturing technology of pure copper (Cu) with complex geometric shapes has opened up vast opportunities for the development of microelectronic and telecommunications functional devices. However, laser forming of high-density pure copper remains a challenge.Recently, the forefront of additive manufacturing technology has noticed a joint report by the University of Hong Kong, ...

    04-11
    查看翻譯
  • Xi'an Institute of Optics and Fine Mechanics has made new progress in the research of attosecond high spatiotemporal resolution imaging

    The attosecond light source has the characteristics of ultra short pulse width, short wavelength, high coherence, and high-precision synchronous control, and has extremely high potential for application in the field of ultrafast imaging. Especially when the attosecond light source reaches the "water window" band, oxygen and hydrogen atoms have weak absorption of X-rays in this band, so water is re...

    2024-10-14
    查看翻譯
  • 85000W laser cutting machine emerged and led the world

    Recently, Pentium Laser and Shenzhen Chuangxin Laser launched the world's first 85000W laser cutting machine, once again breaking the record for the highest power in the cutting field.Zhang Qingmao, Director of the Laser Processing Committee of the Chinese Optical Society, Xu Xia, rotating CEO of Pentium Group, Cai Liang, Director of the Final Inspection Department of Pentium Laser Manufactu...

    2023-09-16
    查看翻譯
  • Halo Industries raises 580 million yuan to achieve significant breakthrough in SiC laser processing field

    Recently, Halo Industries, an innovative technology company based in California, announced that it has successfully raised $80 million in Series B venture capital, marking a significant breakthrough in its use of laser technology to revolutionize the production of silicon carbide (SiC) semiconductor wafer substrates.This financing is led by the US Innovation Technology Fund (USIT) and involves hea...

    2024-07-18
    查看翻譯