繁体中文

Researchers have reinvented laser free magnetic control

530
2023-11-09 15:04:20
查看翻譯

In a significant advancement in material physics, researchers from Germany and the United States have theoretically demonstrated that only extremely thin materials need to be α- RuCl3 can be placed in an optical cavity to control its magnetic state.


This discovery may pave the way for new methods of controlling material properties without the use of strong lasers.

The Role of Optical Vacuum Waves
It is crucial that cavity vacuum fluctuations alone are sufficient to transform the magnetic order of the material from serrated antiferromagnetism to ferromagnetism. This discovery, published in npj Computational Materials, is part of a recent trend in material physics research, which involves using strong lasers to alter the properties of magnetic materials.

By carefully adjusting the characteristics of the laser, researchers can fundamentally change the conductivity and optical properties of different materials. However, this method requires continuous stimulation of high intensity laser and is related to some practical problems, mainly due to the difficulty in preventing the material from heating up.

A New Material Control Method
Therefore, researchers are looking for methods to use light to achieve similar material control, but do not use strong lasers. It is in this context that theorists from the Max Planck Institute for Material Structure and Dynamics in Hamburg, Stanford University, and the University of Pennsylvania, Germany, have proposed a fundamentally different approach to changing the magnetism of real materials in cavities - without the use of lasers.

Their cooperation indicates that just a cavity is enough to α- The serrated antiferromagnetism of RuCl3 is transformed into ferromagnetism. Crucially, the team demonstrated that even in seemingly dark cavities, α- RuCl3 can also detect changes in the electromagnetic environment and correspondingly change its magnetic state.

in summary
This effect is purely a quantum effect, because in quantum theory, a cavity is never truly empty. On the contrary, the fluctuation of the light field causes the appearance and disappearance of light particles, which in turn affects the performance of the material.

The optical cavity limits the electromagnetic field to a very small volume, thereby increasing the effective coupling between light and materials, "said lead author EmilVi ñ asBostr ö m, a postdoctoral researcher in the MPSD theoretical group." Our research results indicate that careful design of the vacuum fluctuations in the cavity's electric field can lead to significant changes in the material's magnetic properties.

Since light excitation is not required, this method in principle bypasses the issues related to continuous laser driving. This is the first work to demonstrate cavity controlled magnetism in real materials, following previous research on cavity control in ferroelectric and superconducting materials.

Researchers hope that designing specific cavities will help them achieve elusive new stages of matter and better understand the subtle interactions between light and matter.

By carefully adjusting the characteristics of the laser, researchers can fundamentally change the conductivity and optical properties of different materials.

What is the quantum effect in this situation?
This is because in quantum theory, cavities are never truly empty. The fluctuation of the light field causes the appearance and disappearance of light particles, which in turn affects the performance of the material.

Source: Laser Network


相關推薦
  • Researchers use spectroscopic methods to characterize ancient Egyptian mining gemstones

    In a recent study published in the journal AIP Advances, researchers used molecular and elemental spectroscopy techniques such as laser induced breakdown spectroscopy (LIBS), Raman spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy to characterize mines in ancient Egypt.In this study, researchers examined various gemstones that can be traced back to the era of the pharaohs. The team...

    2023-08-31
    查看翻譯
  • Important Discovery in Aluminum Alloy Laser Coaxial Fusion Additive Manufacturing

    Aluminum alloy has unique advantages such as lightweight, high strength, and excellent corrosion resistance, and is highly favored in the aerospace manufacturing field. Laser Coaxial Fusion Additive Manufacturing (LCWAM) adopts beam shaping technology, which uses wire as the deposition material to melt and stack layer by layer. Compared to traditional side axis wire feeding technology, laser coaxi...

    2024-04-29
    查看翻譯
  • The influence of post-processing methods on the fatigue performance of materials prepared by selective laser melting

    Researchers from Opole University of Technology in Poland have reported the latest progress in studying the effect of post-processing methods on the fatigue performance of materials prepared by selective laser melting (SLM). The related research was published in The International Journal of Advanced Manufacturing Technology under the title "Influence of post processing methods on fatigue performan...

    01-17
    查看翻譯
  • Manufacturing customized micro lenses with optical smooth surfaces using fuzzy tomography technology

    Additive manufacturing, also known as 3D printing, has completely changed many industries with its speed, flexibility, and unparalleled design freedom. However, previous attempts to manufacture high-quality optical components using additive manufacturing methods often encountered a series of obstacles. Now, researchers from the National Research Council of Canada have turned to fuzzy tomography (a...

    2024-05-30
    查看翻譯
  • New Source Technology will participate in the 2024 Western Optoelectronics Show in the United States

    Laser and electro-optic product manufacturer and supplier Xinyuan Technology announced today that it plans to participate in the 2024 Western Optoelectronics Show in San Francisco from January 30th to February 1st.As a top event in the photonics industry, the Western Optoelectronics Show in the United States will return in 2024 to host another groundbreaking exhibition. This annual event att...

    2023-11-11
    查看翻譯