繁体中文

The Welding Application of Fiber Laser in the Food and Beverage Industry

323
2023-10-19 12:00:28
查看翻譯

As is well known, food and beverage product manufacturers have strict requirements in ensuring the hygiene and cleanliness of their equipment. Once these devices and components are designed or manufactured improperly, they are likely to cause pollution, ultimately leading to health hazards, brand reputation damage, and expensive recall actions. The shortage of labor and raw materials further exacerbates these challenges, putting additional pressure on manufacturers to maintain competitiveness.

To maintain a leading position in these challenges, manufacturers need flexible manufacturing technologies that are easy to use, fast, capable of eliminating waste and rework, and producing equipment with excellent craftsmanship. Laser welding provides excellent processes that enable smooth surface treatment, faster processes, and eliminate potential bacterial contamination traps, making it expected to play a crucial role in the food and beverage industry. Materials and Connection Technologies in the Food and Beverage Industry.

The materials used in equipment often affect manufacturing. Stainless steel, especially grades 304 and 316, is the preferred material for food grade applications due to its cleanliness, corrosion resistance, and ease of disinfection. This type of steel has a high level of durability and wear resistance, and its presence is often found in food preparation, processing, brewing and distillation, catering, and restaurants. Fasteners such as bolts and rivets need to consider the joint structure and direction related to the food contact area. And this may impose limitations on the design and increase the cost of component manufacturing.

Fortunately, handheld laser welding technology has achieved a higher level of design flexibility, reducing the number of parts by eliminating nuts, bolts, and washers, and simplifying machining components by eliminating threaded holes. Due to its ease of use, versatility, and technological capabilities, this technology provides many opportunities for improvement for food and beverage manufacturers in the food and beverage industry.

Handheld laser welding can enable equipment designers to operate not only on food contact surfaces, but also on all surfaces of the equipment (such as welding closed frame pipes), bringing good results to improve cleaning efficiency.

Compared with MIG and TIG welding, the heat input is significantly reduced, and designers have more manufacturing options when using thinner materials, such as reducing raw material costs and related transportation costs in non load-bearing structures.

Handheld laser system for distortionless welding of mixed materials
In addition, the efficiency of laser welding manufacturing can also be improved, thereby increasing profits. Traditional technologies such as MIG and TIG welding require muscle memory and motor skills. A skilled welder may take several years to develop the required level of professional knowledge to enable the manufacturer's products to stand out in competition by producing high-quality welding. Laser welding can enable a worker with only basic dexterity or no welding experience to learn how to produce high-quality and consistent welds in a short amount of time.

High quality welding and easier post-processing
In addition, post-processing of welds, such as grinding and medium blasting, increases costs through equipment and additional labor. The low-cost and easy-to-use welding solution available breaks down the barriers to obtaining professional and skilled labor. Laser welding is also faster than traditional methods, four times faster than TIG welding.

The challenge of using traditional welding methods to achieve high-quality surface treatment for food grade processes is very significant. Laser welding capability - such as swing welding, which can quickly scan the entire welding path of the laser beam, minimize splashing, and enable imperfect parts to be welded, reducing the need for manual post-processing and improving product quality.

In addition, using a laser can use a wire feeder to fill materials where necessary. When combined with swing welding, it is easy to create superior joints, and in many cases, post-processing grinding may not be necessary.

Another key issue is the possibility of microcracks, which may occur on thinner joints when using traditional welding. This can avoid the low heat input and stable welding pool swing ability due to laser welding.

Before welding, debris on the surface of the part may produce inclusions and other defects. Currently, many handheld laser systems also offer laser cleaning capabilities, which can remove pre and post weld smoke and dust, as well as remove discoloration in heat affected areas and allow surface passivation.

Compared to resistance spot welding, laser spot welding is non-contact and precise, completely eliminating tip pressure and alignment issues, resulting in higher quality products and preventing problems such as indentation and asymmetric welds, which can lead to bacterial growth and visually inferior products, respectively.

In addition, laser spot welding only requires contact with one side of the part, providing more design flexibility. Compared to TIG welding, thin parts can be spot welded at significantly higher rates with minimal heat input.

Meeting the hygiene and cleanliness requirements of the food and beverage industry is a complex task. Handheld laser welding and cleaning technologies (such as IPG's LightWeld system) have significant advantages in food grade welding, providing flexibility in equipment design, improving productivity, reducing costs, and improving quality. By adopting this technology, manufacturers can improve food safety, simplify production processes, and ensure customer satisfaction.

Compared to traditional welding methods, handheld laser welding and cleaning have many advantages, which can help improve welding quality and consistency, while reducing production time and costs.

Source: OFweek

相關推薦
  • Expert discussion at IEC TC110 conference: Laser display is expected to surpass traditional display solutions

    Recently, the International Electrotechnical Commission Electronic Display Technology Committee (IEC TC110) International Standards Conference was held in Qingdao, attracting more than 120 experts, scholars, and technical representatives from around the world, including Japan, South Korea, and the United States. At the IEC TC110 conference, laser display technology has won wide recognition from in...

    02-25
    查看翻譯
  • Halo Industries raises 580 million yuan to achieve significant breakthrough in SiC laser processing field

    Recently, Halo Industries, an innovative technology company based in California, announced that it has successfully raised $80 million in Series B venture capital, marking a significant breakthrough in its use of laser technology to revolutionize the production of silicon carbide (SiC) semiconductor wafer substrates.This financing is led by the US Innovation Technology Fund (USIT) and involves hea...

    2024-07-18
    查看翻譯
  • The Mysteries of Atmospheric Chemistry: Transient Absorption Spectroscopy Study Using FERGIE

    backgroundDr. Daniel Stone's research team from the University of Leeds in the UK is primarily focused on the study of oxidation reactions in the atmosphere and combustion processes. Dr. Stone is particularly interested in the chemical reaction processes of active substances that can control atmospheric composition and fuel combustion processes, such as hydroxide (OH), peroxide (HO2), and Crigee i...

    2024-03-06
    查看翻譯
  • A new method for generating controllable optical pulse pairs using a single fiber laser

    Researchers from Bayreuth University and Konstanz University are developing new methods to control ultra short laser emission using soliton physics and two pulse combs in a single laser. This method has the potential to greatly accelerate and simplify laser applications.Traditionally, the pulse interval of lasers is set by dividing each pulse into two pulses and delaying them at different, mechani...

    2024-01-15
    查看翻譯
  • Laser based deformation may lead to self optimized aircraft wings

    Due to advances in materials science by Stockholm researchers, changing the shape during flight to better handle airflow passing through its aircraft wings may be imminent. The trick involves the melting and drilling capabilities of lasers.Researchers from KTH Royal Institute of Technology in Stockholm, Sweden conducted experiments on paraffin. Using the 2D version of the material, they were able ...

    2024-01-18
    查看翻譯