繁体中文

Tokyo Institute of Technology collaborates with EX Fusion to promote laser fusion energy closer to commercialization

340
2023-10-17 13:55:41
查看翻譯

Recently, Tokyo Institute of Technology and EX Fusion established a collaborative research group focused on promoting liquid metal equipment to achieve commercial laser fusion reactors. The two sides held an official signing ceremony in Tokyo on October 11th, marking the official start of their cooperation.

The EX Fusion Liquid Metals Collaborative Research Group was established with the support of the Tokyo University of Science and Technology Open Innovation Platform, with the aim of providing support for research management, intellectual property strategy, and commercialization. The ultimate goal is to promote the implementation of research results developed by the collaborative research group.

In the urgent demand for energy supply that does not emit greenhouse gases, laser fusion reactors have won high expectations globally as a sustainable energy source. Laser nuclear fusion is different from nuclear fusion in that it is a technology that induces nuclear fusion reactions through laser irradiation of fuel, thereby generating energy. It utilizes seawater resources and provides a safe and sustainable energy supply option.

In addition, it also has the ability to flexibly adapt to fluctuations in electricity demand. In the long run, this technology is expected to become a key player in driving the global decarbonization process. However, despite a significant amount of research and development work being carried out worldwide to address technological challenges and improve energy efficiency, commercial laser fusion reactors have not yet been achieved.

EX Fusion, a company that develops laser fusion reactors, has reached a project collaboration with Tokyo Institute of Technology, which conducts academic research on liquid metal fluids. The collaborative research group aims to construct the concept of liquid fuel blankets suitable for laser fusion reactors. It will also develop necessary liquid blanket component technology and conduct extensive joint research to design blanket simulation circuits.

The insights gained from this collaborative research and the liquid metal technology group are expected to be useful not only in the field of nuclear fusion, but also in a wide range of fields such as liquid metal mirrors and environmental purification technologies.
EX Fusion is a start-up company that develops key technologies for laser fusion reactors, including lasers and fuel targets. The company was named one of the "Top 100 Outstanding Risk Enterprises" in 2023 by the major Japanese economic magazine "Toyo Economy". EX Fusion and Tokyo Institute of Technology are leading the way in the research of energy conversion systems utilizing liquid metal fluids. The two sides plan to collaborate to jointly solve technical application problems to maximize the social application of these technologies.

Collaborative research
The collaborative research group will utilize the professional technical knowledge accumulated by Tokyo Institute of Technology to improve the large-scale synthesis technology of high-purity liquid lithium lead fuel breeding materials necessary for commercial reactor operation. It will also develop the final optical system for laser irradiation systems using liquid metal technology.

Conceptual Design of Commercial Laser Fusion Reactors
By integrating these technologies, the collaborative research team will design a blank simulation loop. In addition, it will also consider applying the liquid metal technology developed through collaborative research to environmental purification technologies such as low melting point metal mirrors for deep space exploration and seawater desalination. Both sides aim to accelerate the early realization of laser fusion energy through cooperation.

Future plans
In the next three years, the goal of the collaborative research group is to promote high-purity synthesis methods for liquid fuel cultivation materials, which is key to the laser fusion fuel cycle. The development of this technology aims to support global fusion.

Source: Sohu

相關推薦
  • New type of femtosecond laser: used for broadband terahertz generation and nonlinear wafer detection

    Recently, HüBNER Photonics, the leading manufacturer of high-performance lasers, has launched the latest member of the VALO femtosecond series - VALO Tidal. This laser not only represents a major leap in the fields of imaging, detection, and analysis, but also demonstrates the infinite possibilities of laser technology with its outstanding performance.The VALO Tidal femtosecond laser typically sho...

    2024-06-26
    查看翻譯
  • High Resolution Visible Light Imaging of Large Aperture Telescopes

    The deformable mirror used in adaptive optics can instantly correct the static wavefront aberrations and atmospheric turbulence wavefront disturbances of the optical system by changing its surface. This enables the optical system to automatically adapt to changes in the environment and maintain optimal performance. It is widely used in high-resolution astronomical observations, laser atmospheric t...

    2023-10-31
    查看翻譯
  • Accelerating electrons by emitting laser light into a nanophotonic cavity

    The laser driven particle accelerator on silicon chips was created by two independent research groups. With further improvements, this dielectric laser accelerator can be used in medicine and industry, and even in high-energy particle physics experiments.Accelerating electrons to high energy is usually accomplished over long distances in large and expensive facilities. For example, the electron ac...

    2023-10-28
    查看翻譯
  • Significant progress made in 808nm high-power semiconductor laser chips

    The R&D team of Xi'an Lixin Optoelectronics Technology Co., Ltd. (hereinafter referred to as "Lixin Optoelectronics") has made significant progress in 808nm high-power semiconductor laser chips through continuous technological breakthroughs.808nm semiconductor laser, as an ideal and efficient solid-state laser pump source, plays an important role in advanced manufacturing, mechanical processin...

    2024-06-14
    查看翻譯
  • High Power Laser Assists Scientists in Discovering a New Stage of High Density and Ultra High Temperature Ice

    As is well known, the outer planets of our solar system, Uranus and Neptune, are gas giants rich in water. The extreme pressure on these planets is 2 million times that of the Earth's atmosphere. Their interiors are also as hot as the surface of the sun. Under these conditions, water exhibits a strange high-density ice phase.Researchers have recently observed one of the stages, called Ice XIX, whi...

    2023-10-11
    查看翻譯