繁体中文

Received NASA contract! Breakthrough blue light laser technology leads the space power revolution

175
2024-05-08 15:25:50
查看翻譯

On May 6th, NUBURU, a leading enterprise in high-power and high brightness industrial blue laser technology, announced that the company has been awarded a second phase contract worth $850000 by the National Aeronautics and Space Administration (NASA) to promote blue laser power transmission technology as a unique solution that significantly reduces the size and weight of equipment required for lunar and Martian applications. The award of this contract is based on the successful completion of the first phase of the Small Business Innovation Research (SBIR) project by NUBURU in August 2023.

NUBURU's blue power transmission technology has revolutionized the power transmission methods in extreme environments such as the Moon and Mars, achieving economic and practical power transmission by eliminating reliance on bulky copper or aluminum wires.

This technology not only supports dynamic power distribution for mobile roaming vehicles, temporary/permanent campsites, and remote habitats, but also achieves low size, weight, and power (SWaP) design through its unique blue light laser architecture, complemented by clear visibility assisted navigation, efficient direct diode technology, and advanced direct bandgap solar cell technology, ensuring extremely high power transmission efficiency.

Compared to the energy of other wavelengths, the energy of blue light can be concentrated on smaller spots, which means that blue laser can create finer details.

This technological solution is directly aligned with the mission objectives of NASA's Artemis program, which aims to permanently send humans back to the moon. NASA outlined this requirement in the Moon to Mars target of Lunar Infrastructure Goal 1.

In the first stage, NUBURU has fully demonstrated the scientific, technological, and commercial feasibility of its technology. In the second stage, the company plans to further expand the power, range, and performance of blue light laser power beam technology, demonstrating it within kilometers with a power of several hundred watts, and plans to use next-generation technology to expand the technology range to tens of kilometers on the lunar surface.

"The acquisition of this contract once again demonstrates the innovation and disruptive nature of NUBURU's blue light power transmission technology. We have the potential to completely change the power management challenges faced by NASA, other space operators, and numerous commercial enterprises. Our technology is not only applicable to space environments such as the Moon and Mars, but can also be widely applied in ground applications such as remote power solutions, disaster relief operations, and defense logistics," said Brian Knaley, CEO and CFO of NUBURU
He further added, "NUBURU's high brightness blue laser technology has broad application prospects in various fields such as industry, healthcare, national defense, electric vehicles, consumer electronics, aerospace, healthcare, etc. We look forward to bringing revolutionary changes to various industries through this technology."

NASA's SBIR program aims to provide funding support for innovative technologies with commercial potential, ultimately promoting their commercialization and deployment through three stages of research, development, and demonstration. The second phase contract awarded to NUBURU is a crucial step in the commercialization process of blue laser power beam technology.

Source: OFweek

相關推薦
  • Changing Optical Design: How Multi scale Simulation Improves the Efficiency of Modern Devices

    Optical equipment is an integral part of technologies such as data centers and autonomous vehicle, which are constantly developing to meet the needs of complex applications. The challenge faced by designers is to manipulate light at the wavelength scale to achieve the required optical properties, which requires precision at both the nano and macro scales. Nanoscale structures, such as those on LED...

    2024-03-02
    查看翻譯
  • EV Group launches EVG 850 NanoClean system for ultra-thin chip stacking for advanced packaging

    EV Group, a leading supplier of wafer bonding and lithography equipment in the MEMS, nanotechnology, and semiconductor markets, yesterday launched the EVG850 NanoClean layer release system, which is the first product platform to adopt EVG's revolutionary NanoClean technology.The EVG850 NanoClean system combines infrared lasers with specially formulated inorganic release materials, and can ...

    2023-12-08
    查看翻譯
  • Scientists use the light inside fibers as thin as hair to calculate

    Scientists from Heriot Watt University in Edinburgh, Scotland have discovered a powerful new method for programming optical circuits, which is crucial for the delivery of future technologies such as unbreakable communication networks and ultrafast quantum computers."Light can carry a large amount of information, and optical circuits that use light instead of electricity are seen as the next majo...

    2024-01-20
    查看翻譯
  • Yueming Laser achieves a comprehensive product matrix of "laser+vision+automation+robots"

    Automotive electronics refers to the general term for all electronic devices and components used in automotive products, mainly divided into two major sections: body electronic control systems and on-board electronic devices.Among them, the body electronic control system is mainly composed of engine control system, auto drive system, chassis control system, etc., which is mainly responsible ...

    2023-09-14
    查看翻譯
  • Scientists build high-power cladding-pumped Raman fiber laser in 1.2 μm band

    Laser sources operating in the 1.2 μm band have some unique applications in photodynamic therapy, biomedical diagnostics, and oxygen sensing. In addition, they can be used as pump sources for mid-infrared optical parameter generation and visible light generation through frequency doubling.Laser generation in the 1.2 μm band has been achieved by different solid-state lasers, including semicon...

    2024-01-31
    查看翻譯