繁体中文

New progress in in-situ identification and quantitative research of methane carbon isotopes in the ocean

210
2023-10-13 14:11:54
查看翻譯

Recently, Zhang Xin's research team from the Institute of Oceanography, Chinese Academy of Sciences, based on the in-situ laser Raman spectroscopy technology, made new progress in the in-situ recognition and quantification of methane carbon isotopes by using the significant differences in the Raman spectra of methane carbon isotopes (13CH4 and 12CH4). The relevant results were recently published in the international spectroscopy journal Spectra Acta Part A: Molecular and Biomolecular Spectroscopy.

The deep-sea hydrothermal system releases a large amount of reducing gases such as CH4 and H2, providing a unique community of chemosynthetic organisms, which is of great significance for studying the origin of early life. However, there is still great controversy over the source of such high concentration methane, such as the methane concentration in the "Rainbow" ultramafic hydrothermal system reaching up to 2.5mmol/kg, which is much higher than the methane production from water rock reactions in the laboratory.

The carbon isotope composition of CH4 is a powerful means of distinguishing biogenic and abiogenic methane, but existing experimental techniques and carbon isotope value testing methods cannot exclude the influence of background carbon sources, greatly affecting the reliability of the experiment. In recent years, the rapid development of in-situ Raman spectroscopy technology has made it possible to determine gas isotopes in situ. However, there is still a lack of Raman spectroscopy research on methane carbon isotopes in high-temperature and high-pressure hydrothermal systems.

In response to the above issues, the research team systematically studied the Raman spectral characteristics of 13CH4 and 12CH4 under high temperature and high pressure (25-400oC, 50-400 bar) pure CH4 system and CH4-H2O system using a capillary high-pressure transparent cavity. Research has shown that the peak position of the characteristic peak of 13CH4 is between 2907cm-1 and 2912cm-1, moving towards a lower wavenumber with increasing temperature and decreasing pressure; The characteristic peak of 12CH4 ranges from 2912cm-1 to 2917cm-1, consistently 4.6 to 5.1cm-1 higher than 13CH4 at the same temperature and pressure, indicating that the two can be distinguished well by Raman spectroscopy (Figure 1).

In addition, the research team also established Raman quantitative calibration models for the concentrations of 13CH4 and 12CH4 in aqueous solutions (Figure 2). The study showed that the differences in Raman scattering cross-sections between dissolved 13CH4 and 12CH4, rather than changes in water molar density or Raman scattering cross-sections, resulted in differences in their Raman quantitative calibration models. The relevant research results provide strong support for in-situ identification and quantitative analysis of the carbon isotope composition of methane, and have broad application prospects in high-temperature and high-pressure hydrothermal experiments and deep-sea in-situ detection.

The first author of the paper is Ge Yuzhou, a doctoral candidate from the Institute of Oceanography, Chinese Academy of Sciences, and researcher Zhang Xin is the corresponding author of the article. The research was jointly supported by the National Natural Science Foundation of China and the Chinese Academy of Sciences Class A strategic pilot project.

The relevant achievements and links are as follows:
Ge, Y., Li, L., Xi, S., Zhang, Y., Luan, Z., and Zhang, X., 2023, Comparison of Raman spectral characteristics and quantitative methods between 13CH4 and 12CH4 from 25 to 400 °C and 50 to 400 bar: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, p. 123380.

Figure 1: Peak positions and full width at half height of characteristic peaks of 13CH4 and 12CH4 at different temperatures and pressures

Figure 2 Raman quantitative calibration models for 13CH4 and 12CH4 based on water OH bending vibration band (a) and stretching vibration band (b)

Source: Institute of Oceanography, Chinese Academy of Sciences

相關推薦
  • 3D printing giant Materialise reorganizes

    Recently, the stock price of Materialise, a well-known company in the 3D printing industry, plummeted by 35% overnight. This news was like a heavy bomb, instantly causing a storm in the industry! What exactly happened to Materialise, which was originally developing steadily? Why has there been such a significant drop in stock prices? Today, let's delve into the reasons behind this.The truth behind...

    03-03
    查看翻譯
  • Stuttgart University researchers develop a new high-power 3D printed micro optical device for compact lasers

    Researchers from the Fourth Institute of Physics at the University of Stuttgart have demonstrated the feasibility of 3D printed polymer based micro optical devices in harsh laser environments.This study was detailed in the Journal of Optics, outlining the use of 3D printing technology to directly manufacture microscale optical devices on fibers, seamlessly integrating fibers and laser crystals int...

    2024-01-09
    查看翻譯
  • QBeam launches innovative window ablation laser system to achieve free space optical communication

    QBeam is a leader in developing breakthrough optical products and announced today that its handheld laser ablation equipment is fully launched for free space optical communication in indoor office locations. The qBeam window ablation laser allows for the installation of optical communication terminals indoors by treating windows that otherwise block the infrared beams of the terminals.Commercial b...

    2024-02-15
    查看翻譯
  • The world's most powerful laser attempts to unravel the secrets of the universe

    They are the strongest lasers in history, and their beams are helping scientists explore the structure of the universe.In a research laboratory at the University of Michigan, bright green light fills the vacuum chamber of a technology giant. It is the size of two tennis courts. The walls are shielded with 60 centimeters of concrete to prevent radiation leakage, and workers wear masks and hairnets ...

    2023-11-28
    查看翻譯
  • This laser and optoelectronic component supplier has reached a strategic distribution agreement

    Recently, Laser Components USA, a leading laser and optoelectronic component supplier, announced that it has reached a strategic distribution agreement with Infrasolid, a pioneer in advanced infrared emitter technology.This agreement combines Laser Components USA's extensive distribution network with Infrasolid's innovative infrared product solutions, providing direct replacement products for all ...

    2023-10-24
    查看翻譯