繁体中文

CU Boulder's liquid scanning technology can better observe brain activity

7
2025-10-20 10:58:49
查看翻譯

CU Boulder published a study in Optical Letters demonstrating a new high-speed laser guidance method for imaging applications, using a fluid scanner built around an electrowetting prism to replace traditional mechanical components.

"Most laser scanners today use mechanical mirrors to steer beams of light," said Darwin Quiroz from CU Boulder.

"Our approach replaces that with a transmissive, non-mechanical device that’s smaller, lower-power and potentially easier to scale down into miniature imaging systems."

Smaller and non-mechanical ways to scan lasers should help meet the demands of modern rapid imaging and fluorescence microscopy systems, where choices are often limited by weight, size and power requirements, noted the team.

These demands are further magnified with the growing interest in miniature microscopy for in vivo imaging of neuronal activity and stimulation.

 

 

Darwin Quiroz: new ways to understand the brain


Electrowetting optics could be an answer, using an electric field to change the curvature of a conductive liquid and so control the behavior of a laser beam at the liquid surface. This principle has been put to use in applications such as lidar, but previous work with electrowetting prisms was limited to slow scanning speeds or one-dimensional beam steering.

Transform the study of PTSD or Alzheimer's disease

The project built on previous CU Boulder studies into using such one-dimensional electrowetting scanners in a microscope, and also how to employ the same principle in an OCT platform to improve examination of the eye or the heart.

The new device involves a cylindrical glass tube 5 millimeters tall filled with two immiscible liquids, deionized water and a cyclohexane. Four individually accessible electrodes around the outside of the cylinder control the tilt of the interface between the liquids, so a laser passing through the cylinder from one fluid to the other can be deflected by different amounts when it crosses the slanted interface.

In trials, the device demonstrated two-dimensional scanning at speeds from 25 to 75 Hz when built into a two-photon laser scanning microscope. Successful imaging of 5-micron targets is a milestone toward making the devices practical for real-world imaging, noted the project.

"A big challenge was learning how to drive the device in a way that produces linear, predictable scanning without distortion," commented Quiroz. "We discovered that the prism has resonant modes like standing waves that we could actually leverage for scanning at higher speeds."

Since electrowetting prisms are compact and energy efficient, they could be integrated into miniature microscopes small enough to sit on top of a live animal's head, helping the study of brain function in living subjects.

"Imagine being able to watch brain activity in real-time while an animal runs through a maze," said Quiroz. "That’s the kind of in vivo imaging this technology could enable. It could transform how we study neurological conditions like PTSD or Alzheimer’s disease."

Source: optics.org

相關推薦
  • Laser giant nLIGHT's preliminary performance forecast for the fourth quarter of 2024

    Recently, nLIGHT, a manufacturer of high-power semiconductors and fiber lasers, released its preliminary performance forecast for the fourth quarter of 2024.According to disclosed information, nLIGHT expects its revenue for the fourth quarter of 2024 to be between $46 million and $48 million, lower than the estimated range of $49 million to $54 million when it released its third quarter results on...

    01-16
    查看翻譯
  • Rapid and convenient preparation of small-sized metal nanoparticles using microchip lasers

    Liquid pulse laser ablation is a reliable and versatile technique for producing metal nanoparticles in solution. Its advantages include no reducing agent, simple operation, high purity, no need for purification steps, and environmental processing conditions, making it the preferred method for traditional metal NP preparation.The widespread adoption of PLAL in scientific and industrial research has...

    2024-01-30
    查看翻譯
  • Tailoring 'hollow' hydrogen molecule generation with two-color, bicircularly polarized laser pulses

    Rydberg atoms and molecules are characterized by having one or more electrons in highly excited bound states. Such atoms and molecules are said to be in “Rydberg states” and are also called “hollow” atoms and molecules. Rydberg states are useful for studying various phenomena arising in intense light–matter interaction that involve electronic excitation with an intens...

    2023-09-16
    查看翻譯
  • Xi'an Institute of Optics and Fine Mechanics has made significant progress in attosecond imaging research

    Recently, the Xi'an Institute of Optics and Fine Mechanics of the Chinese Academy of Sciences has made significant progress in attosecond imaging research, achieving high-resolution imaging of ultra wide spectrum light sources. The related results were published in the journal Photonics Research under the title "Snapshot coherent diffraction imaging across ultra wideband spectra".Figure 1. Demonst...

    2024-10-26
    查看翻譯
  • Germany has developed direct laser welding technology to achieve adhesive free connection from fiber to chip

    Recently, researchers and their partners from the Fraunhofer Institute for Reliability and Microstructure (IZM) in Germany announced the successful development of a laser welding technology that can efficiently fix optical fibers onto photonic integrated circuits (PICs) without the need for adhesive bonding.This technology is developed in response to biophoton sensing technology, mainly utilizing ...

    2023-08-22
    查看翻譯