繁体中文

Coherent Unifies Ultrafast Laser Business at the Glasgow Center of Excellence

669
2023-09-22 14:21:53
查看翻譯

Recently, Coherent, an American laser system solution provider, announced that all of the company's ultra fast laser business, including the manufacturing of all picosecond and femtosecond lasers, will be unified in one place: the Ultra Fast Center of Excellence in Glasgow, Scotland.

Previously, Coherent's Ultra Fast Center of Excellence located in Glasgow was already a state-of-the-art mass production facility focused on lean production. After recent expansion and renovation, it will accommodate all of the company's ultra fast laser businesses - flagship femtosecond lasers (such as the Coherent Monaco) and picosecond lasers (such as the Rapid and HyperRapid series), which will now be produced at this factory.

Chris Dorman, Executive Vice President of Coherent Laser Business, said, "Creating this extended Center of Excellence will achieve incredible cross product collaboration and standardization of components and processes, and will enable integrated resource planning.

Most importantly, this will translate into some key advantages for Coherent customers, especially their bulk OEMs, including:
-Single point concentration and diffusion achieved in the production of all ultra short pulse (USP) lasers
-Accelerate product development
-Shorten delivery time
-Faster batch production increase
-Flexibility of operation

He added, "This significant transformation in the company's structure demonstrates the maturity of the development of femtosecond lasers. Femtosecond lasers are comparable to picosecond lasers in terms of stability and long-term reliability, operational simplicity, and compact and sturdy packaging. This maturity is reflected in the lasers themselves and their usage: for example, in high-throughput 24/7 industrial applications such as cutting flexible displays, and in life science applications (such as cancer cell analysis), as well as in scientific research in the 'hard core' laboratory (such as attosecond physics).

Chris Dorman pointed out that in all of these fields, femtosecond lasers have become super simple, reliable, and have become tools that can be operated with just one click - much different from engineering innovation a few years ago. They are smaller and more powerful than ever before, and now most types can provide the most advanced and convenient performance.

These characteristics enable femtosecond lasers to be "deeply embedded" in production tools and machines in the display and semiconductor industries, where uninterrupted operation 24/7 is a prerequisite. Laser is also widely used for precision cutting in medical equipment manufacturing departments, such as next-generation coronary artery stents.

The power of femtosecond lasers has also been improved, with the latest Coherent Monaco model providing up to 150 watts of infrared output or up to 50 watts of ultraviolet output. The latter is an important performance indicator for achieving volume cutting of flexible displays.

Fabian Sorensen, Product Line Manager for Industrial Ultra Short Pulse Lasers, explained that the development of this application is occurring simultaneously with changes in laser manufacturing methods. He said, "A key aspect of ultra short pulse lasers nowadays is their maturity as turnkey material processing tools, despite their incredible unique functions.

Customers from large manufacturers to small processing workshops no longer need internal laser engineers. The mass production of our picosecond industrial lasers and scientific femtosecond lasers (such as Chameleon) has fully demonstrated efficient methods. Now, all of our USP/ultrafast lasers will benefit from exactly the same lean manufacturing method.

Sorensen added that another factor behind this unification is the rapidly growing OEM demand for Monaco lasers in the display and semiconductor industries. He explained, "These lasers are very popular in both industries, combining femtosecond pulse width with tens of watts of ultraviolet power or up to 150 watts of near-infrared power to keep up with upstream and downstream processes with the highest quality requirements in high-throughput applications.

Sorensen concluded: So far, we have achieved great success in manufacturing these lasers in Santa Clara, California. Now is the right time to shift production to Scotland, where we have the technology and expertise to increase production and have extremely high unit to unit collaboration. We are able to provide OEM customers with the flexibility they require, while improving product reliability and overall performance, making it better for science Curiosity has transformed into the cornerstone of today's industry.

Source: OFweek

相關推薦
  • Developing nanocavities for enhancing nanoscale lasers and LEDs

    As humanity enters a new era of computing, new small tools are needed to enhance the interaction between photons and electrons, and integrate electrical and photon functions at the nanoscale. Researchers have created a novel III-V semiconductor nanocavity that can limit light below the so-called diffraction limit, which is an important step towards achieving this goal.In the journal Optical Materi...

    2024-01-29
    查看翻譯
  • This laser and optoelectronic component supplier has reached a strategic distribution agreement

    Recently, Laser Components USA, a leading laser and optoelectronic component supplier, announced that it has reached a strategic distribution agreement with Infrasolid, a pioneer in advanced infrared emitter technology.This agreement combines Laser Components USA's extensive distribution network with Infrasolid's innovative infrared product solutions, providing direct replacement products for all ...

    2023-10-24
    查看翻譯
  • Brother Australia launches innovative professional monochrome laser series

    Brother Australia is a renowned printing manufacturer that has expanded its product portfolio by launching its latest innovative commercial machine series, the professional monochrome laser machine series. These extraordinary devices are designed to extend the lifespan of commercial printing cycles and improve productivity. Due to their sturdy components and durable consumables, these extraordinar...

    2024-03-21
    查看翻譯
  • The scientific research team has proposed a modeless Raman fiber laser using a traditional resonant cavity structure

    The pump source, gain material, and resonant cavity are the three elements that make up a laser. Due to the selective effect of the resonant cavity on the lasing frequency, multi longitudinal mode operation is one of the characteristics of fiber lasers based on traditional resonant cavity structures, manifested as periodic beat peaks in the radio frequency (RF) spectrum and periodic fluctuations i...

    2023-08-15
    查看翻譯
  • 20W High Power Fiber Optic Frequency Comb with 10 to 19 Power Outside Ring Frequency Stability

    High power optical frequency combs play a crucial role in nonlinear precision spectroscopy, extreme ultraviolet optical frequency comb generation, nuclear atomic clock research, and other fields. Fiber optic femtosecond lasers are the preferred solution for achieving high power optical frequency combs due to their simple structure, stable performance, and easy amplification. However, due to the un...

    2023-10-20
    查看翻譯