繁体中文

Intelligent laser welding with dynamic beam shaping function can reduce the demand for filler wire

1146
2025-09-05 10:20:16
查看翻譯

In EU project ALBATROSS, Fraunhofer IWS has developed battery housing for E-vehicles.

Laser processes with dynamic beam shaping create stable joints even in challenging material combinations. Recent applications demonstrate how to eliminate filler materials while improving quality, energy efficiency, and production logic.
Fraunhofer Institute for Material and Beam Technology (IWS) will present novel laser welding solutions at the trade fair Schweißen & Schneiden 2025 (Joining-Cutting-Surfacing) in Essen, Germany, between 15-19 September.

 



Stable laser welding method for aluminum die castings and extruded profiles


The focus of the newly-developed processes is on intelligently-guided beam processes that operate without filler wire and can be transferred into real production scenarios. Industries already applying the technology include lightweight structures for e-mobility, aerospace tanks, and load-bearing components in steel construction.

Several current development projects rely on laser-based joining. A precisely controlled beam actively influences melt behavior, eliminating the need for filler wire. “We demonstrate that even the most demanding welding tasks – such as joining of difficult-to-weld material alloys or welding of heavy sections – can be performed robustly and productively with less energy, material, and rework,” said Dr. Axel Jahn, Head of the Joining Department at IWS.

Aluminum battery housing

In the EU project ALBATROSS, IWS developed an innovative laser-fabricated battery housing for electric vehicles and successfully demonstrated it at full component scale. The lightweight design combines aluminum extrusion profiles with die-cast aluminum parts, featuring walls up to 5 mm in thickness.

“Our solution relies on targeted oscillation of the laser beam, which moves the melt pool, reduces pores, and produces metallurgically stable welds,” said Jahn. “This allows us to generate high-quality aluminum welds without the filler material usually required.”
The housing has already been integrated and tested in a real vehicle model. Within the Fraunhofer lead project FutureCarProduction, the technology is now being advanced for secondary aluminum and cast-to-cast joints, alongside a sustainability assessment.

For aerospace applications, Fraunhofer IWS has developed a laser welding process with dynamic beam shaping to produce closed tank structures from high-strength 2000-series aluminum alloys. The new laser process operates without filler material and achieves stable, low-heat welding even on three-dimensional contours. “The process is ideal for closing rotationally symmetric containers and is also under study for pipe welding,” Jahn said.

 



Laser-welded aluminum battery housing


…and Fraunhofer IOSB system monitors movements in cars

The Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (IOSB) has developed an intelligent vision technology that uses AI to automatically log and analyze human movements inside vehicles. Called the AktiMeter, the system is suited to market research, user-centered product development and ergonomic studies, says IOSB.

Eye tracking systems are already in use in many industries, such as market research and development of distraction-free vehicle features. The AktiMeter captures information on vehicle occupants’ entire bodies. This provides insight into people’s sitting positions, movements and gestures, activities and intentions.

The technology can determine where a person’s arms and hands are located, in which direction the driver’s head turns and what objects are used in the vehicle’s interior. This opens up new prospects for research, as long car trips can be analyzed automatically.
IOSB specializes in computer vision, which means the researchers there interpret anything and everything that can be captured by optical sensors. Frederik Diederichs and his team use this information to improve human-AI interactions inside the vehicle. Future self-driving applications could benefit from the data collected, as it serves as a basis for developing smart driver assistance systems that respond to the behavior and needs of vehicle occupants.

 



AktiMeter suits market research, product development and ergonomic studies


AI and machine learning

The AktiMeter combines computer vision techniques based on AI, which can recognize body poses and objects, with a 3D model of the vehicle. Machine learning processes can then draw further conclusions from this, for example about the activity. This approach is especially suitable for fast, energy-conserving analyses without a cloud connection or powerful hardware in the car itself.

Automatic data interpretation is used to create a 3D digital twin of the vehicle’s interior. This data source is used to draw conclusions directly in the vehicle. This minimizes the amount of storage required while eliminating the need to store image data that could pose issues under the EU General Data Protection Regulation (GDPR).

“Previous [analytical] methods are trained on predefined situations from which training data was collected in a laborious and time-consuming process. Thanks to the use of generative AI, it is now possible to use the AktiMeter to define situations flexibly without having to collect training data,” said Manuel Martin, a senior scientist in the Perceptual User Interfaces working group at IOSB.

The researchers will be presenting their technology in a level 3 automated vehicle at the joint Fraunhofer booth at IAA MOBILITY, between September 9–12, in Munich, Germany.

Source: optics.org

相關推薦
  • Dr. Kenichi Iga wins awards in the field of lasers

    Dr. Kenichi Iga (85), Professor Emeritus at Tokyo University of Science, has been awarded the 2025 Honda Prize. The Honda Foundation announced that the award recognizes his outstanding contributions in proposing and advancing the commercialization of “surface-emitting lasers.” This type of semiconductor laser, characterized by its miniaturization, high-density integration, and low power consumptio...

    11-07
    查看翻譯
  • This laser cleaning "dark horse" announces annual performance and shareholder information

    On April 15th local time, Laser Photonics, a developer of laser cleaning equipment and solutions, announced its financial results for the fourth quarter and the year ended December 31, 2023. The financial report shows that in the fourth quarter of 2023, its revenue was $800000, with reduced operating and net losses. Here are the specific data:In addition to the financial report, the company's CEO ...

    2024-04-16
    查看翻譯
  • DustPhotonic is the first to develop an 800G silicon photonic chip

    Recently, DustPhotonics released a single chip 800G-DR8 silicon photonic chip for data center applications, which is an important milestone in practical photonics in data centers. The company claims that its single-chip solution provides high-performance and easy to implement solutions for system architects.DustPhotonics' 800G-DR8 photonic integrated circuit provides a single chip solution for fib...

    2023-10-13
    查看翻譯
  • Meltio launches a new blue laser 3D printer M600

    Recently, metal 3D printing manufacturer Meltio launched its latest metal 3D printer - M600. This M600 has shown significant progress in integrating into industrial manufacturing processes, no longer limited to niche applications. Like most of Meltio's product lines, the design of M600 was originally intended to address common manufacturing issues such as long delivery times, high inventory cost...

    2024-07-06
    查看翻譯
  • Xi'an Institute of Optics and Fine Mechanics has made progress in the field of integrated microcavity optical frequency comb

    Recently, researcher Zhang Wenfu from the National Key Laboratory of Ultrafast Optical Science and Technology of Xi'an Institute of Optics and Mechanics, researcher Chen Wei from the academician team of Guo Guangcan from the Key Laboratory of Quantum Information of the Chinese Academy of Sciences of the University of Science and Technology of China, and professor Yang Jun from the School of Intell...

    02-19
    查看翻譯