繁体中文

Inertia Enterprises focuses on the commercialization of fusion energy

205
2025-08-29 10:50:34
查看翻譯

Inertia Enterprises, a private fusion power start-up, based in San Francisco, CA., has announced the formation of the company, co-founded by fusion energy pioneer Dr. Andrea “Annie” Kritcher, fusion power plant designer Prof. Mike Dunne, and successful tech entrepreneur, Jeff Lawson.

Underpinned by this team of experts spanning science, engineering, technology and business, Inertia stated that it is “commercializing the only approach to fusion that has successfully achieved ignition and energy gain – demonstrated at the U.S. Department of Energy’s (DOE) Lawrence Livermore National Laboratory (LLNL)”.

Inertia’s strategy is to take the most direct, scientifically proven path from what is working today at LLNL toward commercial energy. The company is developing a new generation of mass-produced, low-cost lasers and fuel targets that leverage the scientific result of fusion ignition.

 



Inertia co-founders: Annie Kritcher, Jeff Lawson, and Mike Dunne


The company has partnered with LLNL on a substantial and multifaceted relationship, including research agreements, to advance low-cost, mass-production target design and fabrication. The company has licensed nearly 200 patents covering multiple technologies critical to achieve fusion ignition, and has reached a first-of-its-kind arrangement to advance public-private collaboration and technology transfer, allowing Dr. Kritcher to be a co-founder of Inertia.

“The goal of delivering limitless fusion energy has attracted tens of billions of dollars in government investment and decades of research, culminating in the achievement of ignition just a couple of years ago,” said Jeff Lawson, Inertia founder and CEO. “Standing on the shoulders of giants, we see a clear path from big science to commercial energy by scaling up the industrial base to the scale needed for laser inertial fusion.”

In December 2022, Dr. Kritcher made history with the team at LLNL by conducting the first controlled fusion experiment to achieve fusion ignition, also known as scientific energy breakeven, meaning it produced more energy from fusion than the laser energy used to drive it. This unprecedented achievement laid the foundation for Inertia to bring fusion to commercial scale.

The founders

Inertia Enterprises is founded by three established innovators in their respective fusion-related fields:

Kritcher has been the lead designer of these LLNL experiments since 2019, responsible for the physics design that successfully achieved ignition.
Lawson was the founder and CEO of tech platform Twilio, which he grew from inception to over $4B in revenue, a public listing on the New York Stock Exchange, and a global footprint of over 300,000 customers.
Dunne is a professor of Photon Science at Stanford University and an Associate Lab Director of the SLAC National Accelerator Laboratory, where he leads a preeminent, multi-billion-dollar research facility using high power lasers that hit targets at kHz rates. Previously, Dunne led the five-year program at LLNL to deliver an industry-validated power plant design based on the LLNL ignition approach, assembling a team of over seventy vendors, utility companies, national labs and universities.
Inertia’s statement added that the startup “is positioned to transform the field by combining the proven science from LLNL with innovative technology, leveraging Dr. Kritcher’s specialized expertise in fuel-target design, Professor Dunne’s leadership in integrated fusion power plant development and multi-billion-dollar laser facility advancement, and Lawson’s two decades of start-up and business acumen—ensuring the partnerships and expertise needed to move this breakthrough toward commercialization.”

Kritcher commented, “There’s a lot of excitement around various potential pathways to fusion right now, but only one approach has delivered energy gain. This result is a monumental step for limitless clean energy.” Fusion energy offers a technological breakthrough unseen in American history since modern inventions like the internet, telephone, or light bulb. Fusion energy is the process where two light atoms combine, or “fuse” to form a larger atom, releasing a massive amount of energy.

“We’re at a crucial tipping point. 2022 proved that controlled fusion ignition is possible, but current lasers, like the one at LLNL, which is the size of three football fields, are not suitable for commercialization,” said Prof. Dunne. “But with modern laser technologies, we can combine the transformative results from Annie and the team with high-powered laser technology from the semiconductor industry to convert decades of research into a reality.”

Source: optics.org

相關推薦
  • The Science Island team has made breakthroughs in high pulse energy mid infrared fiber transmission

    Recently, the Jiang Haihe Research Group of the Health Institute of the Chinese Academy of Sciences Hefei Institute of Materia Medica made important progress in the research of the high-energy pulsed laser transmission system in the mid infrared band, and designed a 78 μ The 6-hole microstructure anti resonant hollow core fiber (AR-HCF) with a larger core diameter achieved efficient transmissio...

    2024-03-23
    查看翻譯
  • Creativity Falcon 2 laser cutting machine will be launched in Germany equipped with a new 60W laser head

    Starting from June 20th, The Creativity Falcon 2 laser cutting machine will also be launched in Germany, equipped with a new 60W laser head. With this ability, fully encapsulated equipment can now also be carved into steel. High power is achieved through twelve 5-watt laser diodes, whose beams are combined with each other. This will make it possible to cut 22mm thick lime wood and 30mm thick or...

    2024-05-29
    查看翻譯
  • Using attosecond pulses to reveal new information about the photoelectric effect

    Scientists from the Stanford National Accelerator (SLAC) laboratory of the US Department of Energy have revealed new information about the photoelectric effect using attosecond pulses: the delay time of photoelectric emission is as long as 700 attosecond, far exceeding previous expectations. The latest research challenges existing theoretical models and helps to reveal the interactions between ele...

    2024-09-02
    查看翻譯
  • Nanchang University research progresses in acoustic resolution photoacoustic microimaging enhancement

    As a promising imaging modality that combines the high spatial resolution of optical imaging and the deep tissue penetration ability of ultrasound imaging, photoacoustic microscopy (PAM) has attracted a lot of attention in the field of biomedical research, and has a wide range of applications in many fields, such as tumor detection, dermatology, and vascular morphology assessment. Depending on the...

    2024-09-18
    查看翻譯
  • Researchers have demonstrated a breakthrough boson sampling method using ultracold atoms in optical lattices

    JILA researcher, National Institute of Standards and Technology (NIST) physicist, physics professor Adam Kaufman and his team at the University of Colorado Boulder, as well as NIST collaborators, demonstrated a new method of cross laser beam lattice sampling using ultracold atoms for boson sampling in two-dimensional optics. This study, recently published in the journal Nature, marks a significant...

    2024-05-10
    查看翻譯