繁体中文

Lightmatter announces the first 16 wavelength bidirectional link on single-mode fiber

1049
2025-08-22 10:15:43
查看翻譯

Lightmatter, a Boston-based startup developing silicon photonics hardware aimed at AI and high-performance computing, has announced a 16-wavelength bidirectional Dense Wavelength Division Multiplexing optical link operating on one strand of standard single-mode (SM) fiber.

Powered by Lightmatter’s Passage interconnect and Guide laser technologies, this development “shatters previous limitations in fiber bandwidth density and spectral utilization and sets a new benchmark for high-performance, resilient data center interconnects,” the company stated.

 



Lightmatter’s Passage platform


The Lightmatter announcement continues, “With the rise of complex trillion-parameter Mixture of Experts models, scaling AI workloads is increasingly bottlenecked by bandwidth and radix (I/O port count) limitations in data center infrastructure.” Passage technology delivers 800 Gbps bidirectional bandwidth per SM fiber over several hundred meters.

While commercial bidirectional transmission on a single fiber has been limited mainly to two wavelengths, achieving 16 wavelengths has required multiple or specialized fibers. Lightmatter states that its achievement “addresses significant technical challenges related to managing complex wavelength-dependent propagation characteristics, power budget constraints, optical nonlinearity, and mitigating crosstalk and backscattering in a single fiber.”

How it works

The development incorporates a proprietary closed-loop digital stabilization system that actively compensates for thermal drift, ensuring continuous, low-error transmission over wide temperature fluctuations.

Architectural innovations make the Passage 3D CPO platform (pictured, above) inherently polarization-insensitive, maintaining robust performance even when the fibers are being handled or subject to mechanical stress. Standard SM fiber, while offering immense bandwidth potential, does not inherently maintain light’s polarization state, unlike specialized and more costly polarization-maintaining fiber.

This combination of unparalleled fiber bandwidth density, efficient spectral utilization, and robust performance makes Lightmatter's Passage technology foundational for the industry’s transition from electrical to optical interconnects in AI data centers. It empowers customers to accelerate development of larger and more capable AI models with more powerful, efficient, and scalable data centers.

‘Architectural leap’

Nicholas Harris, founder and CEO, commented, “Data centers are the new unit of compute in the AI era, with the next 1000X performance gain coming largely from ultra-fast photonic interconnects. Our 16-lambda bidirectional link is an architectural leap forward. Hyperscalers can achieve significantly higher bandwidth density with standard single-mode fiber, reducing both capital expenditure and operational complexity, while enabling higher radix — more connections per XPU or switch,” said Harris.

Alan Weckel, co-founder and analyst at market intelligence group 650 Group, said, “Lightmatter’s ability to dramatically increase bandwidth density on existing single-mode fiber, coupled with the technology’s robust thermal performance, is a game-changer for data center scalability and efficiency. This solves one of the most pressing challenges in AI development.”

Source: optics.org

相關推薦
  • Progress makes laser based imaging simpler and more three-dimensional

    a. b. Schematic diagram of PACTER system calibration and imaging program. BT, beam trap; DAQ, data acquisition unit; HWP, half wave plate; PBS, polarization beam splitter; ER, traverse the relay. The difference between the two modes is highlighted by a black dashed box. c. Schematic diagram of a single component ultrasonic transducer manufactured on ER. d. The ultrasound transducer detected 1D P...

    2023-12-05
    查看翻譯
  • CU Boulder's liquid scanning technology can better observe brain activity

    CU Boulder published a study in Optical Letters demonstrating a new high-speed laser guidance method for imaging applications, using a fluid scanner built around an electrowetting prism to replace traditional mechanical components."Most laser scanners today use mechanical mirrors to steer beams of light," said Darwin Quiroz from CU Boulder."Our approach replaces that with a transmissive, non-mecha...

    10-20
    查看翻譯
  • Scientists simulate the conditions that allow photons to collide with photons by using lasers

    As far as quantum physics is concerned, one of the most striking predictions is that matter can be produced entirely from light (i.e., photons). Pulsars are an example of an object capable of achieving this feat.In a recent study reported in the journal Physical Review Letters, a research team led by scientists at Osaka University simulated the conditions that allow photons to collide with photons...

    2023-08-11
    查看翻譯
  • UK venture capital group acquires MicroLED developer Plessey

    Haylo Labs, a UK company recently established by former WaveOptics CEO David Hayes, has acquired microLED developer Plessey Semiconductors.Haylo says it also plans to invest more than £100 million scaling Plessey’s production capacity over the next five years at the firm’s GaN-on-silicon site in Plymouth and beyond, in anticipation of fast-growing demand for augmented and virtual reality (AR/VR) a...

    09-01
    查看翻譯
  • Laser direct writing technology for preparing micrometer scale heatable graphene de icing and anti icing surfaces broadens the preparation method of new de icing and anti icing devices

    Research backgroundIn transportation, industrial production, and practical life, icing often brings great troubles, and the most serious is that during the flight of an aircraft, key components once frozen will seriously affect navigation safety.The traditional passive deicing and anti icing strategies for aircraft, such as mechanical vibration and anti freezing liquids, have problems such as inco...

    2023-10-16
    查看翻譯