繁体中文

Safran Group believes that additive manufacturing is playing an increasingly important role in engines

274
2025-06-18 10:31:54
查看翻譯

Safran Group showcased a 3-foot diameter turbine aft casing manufactured using additive manufacturing technology under the RISE technology program at the Paris Air Show in recent years. This component is Safran's largest additive manufacturing component to date, indicating the increasingly widespread application of additive manufacturing in the design and manufacturing of turbofan engines.

 



In early June, Delphine Derud, Vice President of Engineering at Safran Aircraft Engines, stated that compared to traditional cast parts, the mass of the turbine rear casing has been reduced by one-third, and the production cycle has been shortened from 18 months to three weeks. The ultimate goal is to compress it to one week or even shorter in order to incorporate design changes in the later stages of development.

Francois Xavier Foubert, CEO of Safran Additive Manufacturing Park, pointed out that although melting metal through additive manufacturing is not the most economical way, if eliminating welding can bring benefits, such as significant weight reduction or achieving more complex configurations, integrating more work, or making the overall design lighter, then this technology is meaningful; Traditional manufacturing requires 3-10 pounds of metal to produce a 1-pound component, while additive manufacturing only requires 1.5 pounds, greatly improving material utilization; The current additive manufacturing turbine casing requires almost no mechanical processing and can achieve "near net forming".

Safran Group has applied additive manufacturing to engine production, and currently has 14 components (made of aluminum, nickel based high-temperature alloys, or titanium) in mass production. Fubel stated that 25% of additive manufacturing applications in RISE validation machines will represent the production standards for future engines. He predicts that additive manufacturing equipment will be able to produce larger parts: parts with a diameter of 2 meters can be manufactured by the early 2030s; Installing more high-power lasers on a single device can melt thicker layers of metal powder, thereby improving efficiency.

Fubel reminds designers that there are risks involved in developing new categories of metal powders. A single device is only compatible with one type of powder, and multiple types of metal powders require multiple devices. Given that each device is worth 3 to 5 million euros (3.4 to 5.7 million US dollars), manufacturers tend to control the number of devices, while also requiring a single device to support multiple component designs.

Fubel added that although additive manufacturing applications are expanding, other processes remain competitive. Due to its low cost, the casting process may be used to manufacture some structurally simpler components. Complex metallurgical techniques may be suitable for manufacturing single crystal components; The forging process may still be suitable for manufacturing high load components. Engine manufacturers can sometimes choose between these three processes. Eric Darbier, Executive Vice President and Chief Technology Officer of Safran, pointed out that "forging, casting, or additive manufacturing should be chosen with lower costs while ensuring autonomy and controllability." Although the mine cannot be relocated, the process of atomizing metal into powder can be localized. Airbus and Safran may request joint venture metal supplier Obert Duvall to construct titanium alloy atomization facilities.

Source: Yangtze River Delta G60 Laser Alliance

相關推薦
  • Israeli startup has developed a new laser powder bed fusion technology (SLS)

    Starting company 3DM from Israel has developed a new laser powder bed fusion technology (SLS) and recently released its first product. It is reported that the new technology developed by this young company established in 2016 will open up the possibility of new materials.3DM quantum cascade laserThe quantum cascade laser (QCL) stands out in the competition of 3DM in the SLS field. QCL was develope...

    2023-10-27
    查看翻譯
  • Scientists decipher the code for extending the lifespan of perovskite solar technology

    The latest research led by the University of Surrey shows that alumina (Al2O3) nanoparticles can significantly enhance the lifespan and stability of perovskite solar cells, extending the service life of such high-efficiency energy devices tenfold.Although perovskite solar cells have advantages such as low cost and light weight compared to traditional silicon-based technologies, their commercial po...

    03-03
    查看翻譯
  • Researchers have reinvented laser free magnetic control

    In a significant advancement in material physics, researchers from Germany and the United States have theoretically demonstrated that only extremely thin materials need to be α- RuCl3 can be placed in an optical cavity to control its magnetic state.This discovery may pave the way for new methods of controlling material properties without the use of strong lasers.The Role of Optical Vacuum W...

    2023-11-09
    查看翻譯
  • Overview: High throughput preparation of alloy composition design in additive manufacturing

    Researchers from the New Materials Technology Research Institute of Beijing University of Science and Technology and the Beijing Modern Transportation Metal Materials and Processing Laboratory reported a review of high-throughput preparation of alloy composition design in additive manufacturing. The relevant research is titled "High throughput preparation for alloy composition design in additive m...

    2024-07-08
    查看翻譯
  • NSF funding for collaboration between researchers from Syracuse University and Cosmic Explorer

    Billions of years ago, in a distant galaxy, two black holes collided, triggering one of the most extreme cosmic events in the universe. The power of this phenomenon is so great that it distorts the structure of spacetime, emitting ripples called gravitational waves.These waves will eventually be detected on Earth by the Advanced Laser Interferometer Gravity Wave Observatory (LIGO) detector, and te...

    2023-10-13
    查看翻譯