繁体中文

Light Adv. Manuf. | Laser Direct Writing Assists Perovskite Optoelectronic Applications

188
2024-03-25 13:55:14
查看翻譯

Introduction
Metal halide perovskites have excellent optoelectronic properties and have become the undisputed "star" materials in the semiconductor field, attracting great attention from both academia and industry. With a large amount of research investment, the application of perovskite covers various optical and optoelectronic fields such as single photon sources, micro nano lasers, photodetectors, optical logic gates, optical communication, waveguides, nonlinear optics, etc. Therefore, building and integrating photonic devices with different functions based on a single perovskite chip is very promising.

The development of micro nano processing technology is a crucial step in integrating various optoelectronic devices onto a single chip to meet the requirements of advanced integrated optics, and will play a crucial role in the development of next-generation information technology.
Laser direct writing (DLW) is an efficient, non-contact, maskless micro/nano processing technology that couples the laser beam with a microscope to reduce the size of the output spot and achieve high-resolution micro/nano processing. According to the manufacturing mechanism and material threshold response, the optimal resolution of DLW is usually between a few to hundreds of nanometers. Meanwhile, DLW can flexibly manufacture any micro/nanostructure on the same substrate, and can also use spatial light modulators to change the focused laser field into a specific shape or generate multiple focal points simultaneously, thus meeting the needs of large-scale manufacturing.

Recently, Associate Professor Gan Zhixing from Nanjing Normal University, in collaboration with Professor Jia Baohua and Researcher Wen Xiaoming from Royal Melbourne Institute of Technology, published a review paper on "Direct laser writing on halide perovskites: from mechanisms to applications" in Light: Advanced Manufacturing. The paper reviewed the latest progress of DLW in the field of perovskite semiconductors, revealed the interaction mechanism between light and perovskite during laser direct writing, and introduced the application of DLW processed micro nano structured perovskite in optoelectronic devices. Finally, the future prospects and challenges of this technology were summarized.

Figure 1: Mechanism and application of interaction between laser and perovskite

The interaction mechanism between laser and perovskite
Laser has unique advantages such as high precision, non-contact, easy operation, and no mask, making it an excellent tool for operating, manufacturing, and processing micro and nanostructures on semiconductors. The specific interaction mechanism between laser and perovskite can be divided into various phenomena such as laser ablation, laser induced crystallization, laser induced ion migration, laser induced phase separation, laser induced photoreaction, and other laser induced transformations. These different mechanisms of action represent different changes in perovskite crystals. For example, laser induced crystallization is the nucleation and crystallization process of perovskite precursors, while laser induced phase separation is the process of separating mixed perovskite phases into two different phases, both of which contain rich physical phenomena. The implementation of the entire micro nano machining process is influenced by DLW parameters, such as wavelength, pulse/continuous wave, action time, power, and repetition frequency. The selection of these parameters provides a flexible and powerful tool for precise control of the microstructure of perovskite.

Optoelectronic applications of micro nano structured perovskites manufactured by DLW
The perovskite material processed by DLW has a wide range of applications in fields such as solar cells, light-emitting diodes, photodetectors, lasers, and planar lenses, exhibiting superior performance. At the same time, due to the unique ionic properties of perovskites, they exhibit phenomena such as ion migration, phase separation, and photochromism under continuous laser action, thereby expanding their applications in multi-color displays, optical information encryption, and storage.

Challenges and Prospects
Compared with traditional semiconductor manufacturing techniques, DLW technology greatly improves manufacturing efficiency due to its simple operation process and high-throughput characteristics, and is expected to produce high-resolution complex micro/nanostructures on a large scale. The combination of cheaper and more flexible controllable lasers with the superior optoelectronic performance of perovskite semiconductors will bring enormous potential for the preparation of micro nano structured perovskite optoelectronic devices. At present, relevant research is still in its early stages and some key technical bottlenecks need to be addressed. It is expected that in the near future, when these bottlenecks are overcome, significant progress will be made in related basic research and industry.

Source: Sohu

相關推薦
  • Researchers use blurry light to 3D print high-quality optical components

    Canadian researchers have developed a new 3D printing method called Blur Tomography, which can quickly produce micro lenses with commercial grade optical quality. The new method can make designing and manufacturing various optical devices easier and faster.Daniel Webber from the National Research Council of Canada stated, "We have intentionally added optical blurring to the beams used in this 3D p...

    2024-05-11
    查看翻譯
  • Scientists achieve extremely short laser pulses with a peak power of 6 terawatts

    RIKEN's two physicists have achieved extremely short laser pulses with a peak power of 6 terawatts (6 trillion watts) - roughly equivalent to the power generated by 6000 nuclear power plants. This achievement will contribute to the further development of attosecond lasers, for which three researchers were awarded the Nobel Prize in Physics in 2023. This study was published in the journal Nature Ph...

    2024-04-22
    查看翻譯
  • The technological iteration route of automotive millimeter wave radar chips

    The rapid development of intelligent cars and autonomous driving technology has made millimeter wave radar inconspicuous, and the widespread application of millimeter wave radar has driven the technological evolution of MMIC.From the expensive gallium arsenide (GaAs) process in the early days to the mainstream CMOS and SiGe processes today, and then to the future promising FD-SOI process, the cont...

    2024-12-07
    查看翻譯
  • Trotec Lasersysteme Darmstadt Laser Cutting Technology Center opens

    Trotec Laser, a manufacturer of laser technology in Upper Austria, is opening a new laser cutting competence center. The expanded showroom in Darmstadt now also houses three new large format laser cutters from the SP series. This strategic move is designed to meet the growing demand for large format laser cutting solutions.To celebrate the reopening of the Darmstadt Competence Centre, Trotec will ...

    2023-09-06
    查看翻譯
  • Scientists demonstrate effective fusion "spark plugs" in groundbreaking experiments

    Researchers from the Laser Energy Laboratory at the University of Rochester led the experiment and demonstrated an efficient "spark plug" for direct driving of inertial confinement fusion. In two studies published in the journal Nature Physics, the team shared their findings and detailed the potential to expand these methods with the aim of successful nuclear fusion in future facilities.LLE is the...

    2024-03-04
    查看翻譯