简体中文

Changchun Institute of Optics and Fine Mechanics has developed a high brightness HiBBEE non-uniform waveguide semiconductor laser

940
2025-03-18 14:14:23
查看翻译

High brightness semiconductor lasers have extremely important applications in fields such as laser radar. Traditional semiconductor lasers face challenges such as large vertical divergence angle, elliptical beam output, multiple lateral modes, and poor beam quality, which limit the direct application of high brightness semiconductor lasers.

In response to this challenge, the team from the Bimberg Sino German Green Photonics Research Center at Changchun Institute of Optics and Fine Mechanics has adopted a high brightness vertical wide area edge emission (HiBBEE) structure in the vertical direction, using the photonic bandgap effect to replace the traditional total reflection principle for light field limitation, improving the size of the optical mode, and reducing the vertical divergence angle of semiconductor lasers; At the same time, in the lateral direction, non-uniform waveguides were used to suppress lateral higher-order modes, improve the lateral beam quality of semiconductor lasers, and optimize the design and preparation of HiBBEE non-uniform waveguide semiconductor lasers. At a current of 1.5A, the full width at half maximum of the vertical and lateral divergence angles is still as low as 8.6 ° and 5.1 °, while maintaining the fundamental mode output. The brightness is improved by 1.5 times compared to similar devices.

 


Schematic diagram of HiBBEE non-uniform waveguide semiconductor laser structure

 


HiBBEE non-uniform waveguide semiconductor laser brightness


This high brightness HiBBEE non-uniform waveguide semiconductor laser can significantly reduce the application cost of semiconductor lasers and has broad application prospects.

The first author of the article is Wu Chengkun, a doctoral student at the Sino German Center, and the corresponding author is researcher Tian Sicong. The research was supported by the Sino German International Cooperation Project of the National Natural Science Foundation of China (Research on 1250nm High Brightness Quantum Dot Laser for Lidar, No. 62061136010).

Source: opticsky

相关推荐
  • Enhanced laser heterodyne spectroscopy contributes to the measurement of atmospheric greenhouse gases

    The research team led by Professor Gao Xiaoming of the Chinese Academy of Sciences Hefei Institute of Physical Sciences has improved the measurement accuracy of atmospheric greenhouse gases by using erbium-doped fiber amplifier assisted laser heterodyne radiometer.The study was published in the Journal of Optics and was selected as an editor's selection.LHR is renowned for its high sensitivity and...

    2023-10-25
    查看翻译
  • Opton Laser commercializes ultra-high contrast third-order autocorrelators

    Recently, Opton Laser International, a supplier specializing in photonics, is currently distributing manufacturer UltraFast Innovations (UFI)'s ultra-high contrast third-order autocorrelator Tundra++. The new generation Tundra aims to characterize the temporal intensity distribution and quality of laser pulses with particularly high sensitivity.This is to avoid the harmful effects caused by the hi...

    2023-08-31
    查看翻译
  • Synchrotron X-ray imaging technology

    According to a recent study published in the journal Science Advances, it reveals how early mammals grew and developed during critical periods of their long 'life history'. A research team including Queen Mary University of London used synchrotron X-ray tomography technology to image the growth rings in fossilized tooth roots, in order to infer the lifespan, growth rate, and even sexual maturity t...

    2024-08-15
    查看翻译
  • Dr. Gu Bo, a renowned expert in the laser industry, has been elected as a member of the Canadian Academy of Engineering

    On May 7, 2024, the official website of the Canadian Academy of Engineering announced that Dr. Gu Bo, a renowned expert in the laser industry, has been elected as a member of the Canadian Academy of Engineering.Dr. Gu BoAcademician of the Canadian Academy of EngineeringFounder/President of Bose Photonics, USADr. Gu Bo is recognized as a pioneer and academic leader in the global field of fiber lase...

    2024-05-07
    查看翻译
  • Yang Xueming from Shenzhen has been elected as a Foreign Fellow of the Royal Society of England

    On May 20th, the Royal Society announced on its official website that over 90 scientists who have made outstanding contributions to scientific research have been newly elected as Fellow of The Royal Society (FRS). Yang Xueming, an academician of the CAS Member and chief director of the Shenzhen Free Electron Laser Device, was newly elected as a foreign academician of the Royal Society of England.A...

    05-26
    查看翻译