简体中文

Acta: Revealing the mechanism of defect formation in additive manufacturing

1087
2025-02-21 15:13:01
查看翻译

Main author: Yanming Zhang, Wentao Yana*
The first unit: National University of Singapore
Published Journal: Acta Materialia

Research background
Industry pain point: Although laser powder bed melting (LPBF) technology can manufacture complex components, the lack of consistent product quality is still the core bottleneck restricting its industrial application. Research has shown that up to 35% of process defects are directly related to powder splashing and entrainment.
Scientific challenge: Traditional experimental methods are difficult to capture microsecond level dynamic processes, and existing numerical models lack accurate descriptions of the gas liquid solid three-phase coupling effect, resulting in unclear mechanisms for defect formation.
Innovation breakthrough point: This study establishes for the first time a CFD-DEM-CALPHAD multi physics field coupling model, breaking through the limitations of traditional simulation methods in modeling phase transition kinetics and metallurgical reactions.

research contents 
Modeling method:
Coupling Computational Fluid Dynamics (CFD) and Discrete Element Method (DEM) to achieve bidirectional coupling between molten pool flow and powder motion
Integrate CALPHAD thermodynamic database to accurately describe metallurgical reactions in multi material systems
Develop a steam jet dynamic model to reproduce the microstructure evolution of Knudsen layer


Figure 1: Schematic diagram of computational domain and mesh.


Experimental verification:
Adopting multiple material systems such as 316L stainless steel and NiTi alloy
Combining high-speed schlieren imaging with ultrafast X-ray observation technology
Build a 4 million grid computing domain, with a single case computation time of 7 days (i9-12900K)


Figure 2: Multiphase flow in the melting process.


Research results
Thermal Splash Dynamics:
70% of the splashing comes from the molten powder in the steam jet zone (Type I)
20% is generated by sudden fragmentation of the molten pool (Type II)
10% from melt pool fluctuations (Type III)


Figure 3: Formation of hot spatters.


Defect formation mechanism:
150 μ m aggregates entering the laser action zone can lead to an 18% increase in porosity
The defect size of Ti particle inclusions in multi material LPBF reaches 45-80 μ m
Splashing momentum changes the flow field at the tail of the molten pool, causing element segregation (Ni segregation degree reaches 62%)


Figure 4: Large agglomeration formed by the coalescence of hot spatters.


Defect criteria:
τ<τc
The critical time τ _c decreases from 157 μ s to 67 μ s as the scanning speed increases


Figure 5: “Chain reaction” of defects induced by large agglomerations.


Deep insight
▶  Technological innovation value:
Establish a fully coupled dynamic model of gas melt pool powder with a resolution of 6 μ m
Revealing the chain reaction mechanism of thermal splashing agglomeration ("defect avalanche" effect)
Propose a prediction criterion for particle inclusion defects based on metallurgical reaction kinetics

▶  Engineering application inspiration:
Developing online monitoring algorithm: implementing defect warning through real-time ratio of τ/τ _c
Optimizing inert gas flow field: controlling the spatial distribution of splashing and redeposition
Multi material process design: Avoiding the combination of liquid-solid phase inversion materials

▶  Current challenges:
The high fidelity model has a high computational cost (single orbit simulation takes 7 days)
The impact of cross airflow on actual working conditions has not been modeled yet
Ultra fine powder (<20 μ m) motion trajectory prediction deviation>12%

▶  Future direction:
Developing GPU accelerated heterogeneous computing framework
Study on the metallurgical behavior of splash matrix interface
Exploring new technologies for controllable utilization of splashes (such as in-situ alloying)

Source: Yangtze River Delta Laser Alliance

相关推荐
  • Atomstack Maker A5 V2: A laser engraving machine suitable for beginners

    In the recent DIY field, innovative and increasingly affordable laser engraving machines have emerged, mainly designed for first-time users in this field. A particularly noteworthy example in this regard is the Atomstack Maker A5 V2 model. This device is known for its versatility and ease of use, making it an ideal choice for beginners in the world of laser engraving.The Atomstack Maker A5 V2 is a...

    2024-01-03
    查看翻译
  • Tunoptix makes breakthrough progress in meta optical platform

    Tunoptix, a developer of computational meta-optics, based in Seattle, WA, has made what it calls “a breakthrough in mobile-scale spectral imaging”. The company’s latest meta-optical platform captures high-fidelity spectral signatures across the visible-to-NIR spectrum in a compact form factor smaller than 1 cm3, consuming less than 500 mW, and operating at real-time frame rates.Tunoptix’s ultra-c...

    07-02
    查看翻译
  • Progress in the Application of China University of Science and Technology's Femtosecond Laser Processing Technology in the Biomedical Field

    Recently, Associate Professor Li Jiawen's research group at the Micro and Nano Engineering Laboratory of the School of Engineering Science, University of Science and Technology of China proposed a femtosecond laser dynamic holographic processing method suitable for efficient construction of three-dimensional capillary scaffolds, which is used to generate a three-dimensional capillary network. This...

    2024-02-11
    查看翻译
  • The fiber laser system overcomes outdated issues through a PC based EtherCAT control platform

    In order to maintain relevance and success, companies with a long history must respect their past while not ignoring the future. This is the method adopted by Cincinnati Corporation (CI), a metal processing machinery manufacturer based in Harrison, Ohio, since its establishment in the late 1890s.The company is carefully considering technological changes. Incorrect selection of control hardware, ne...

    2024-05-25
    查看翻译
  • Nature Photonics reports a new type of nonlinear optical crystal - all band phase matched crystal

    Short wave ultraviolet all solid-state coherent light sources have the characteristics of strong photon energy, practicality and precision, and high spectral resolution. They have significant application value in laser precision processing, information communication, cutting-edge science, and aerospace fields.The core component of obtaining all solid-state shortwave ultraviolet lasers is nonlinear...

    2023-10-07
    查看翻译