简体中文

Researchers develop new techniques for controlling individual qubits using lasers

679
2023-09-12 15:01:26
查看翻译

Researchers at the University of Waterloo's Institute for Quantum Computing (IQC) have developed a new technique that uses lasers to control individual qubits made from the chemical element barium. The breakthrough is a key step toward realizing the capabilities of quantum computers.

The new technique uses thin glass waveguides to segment and focus laser beams with unprecedented precision. Each focused laser beam can be adjusted independently, making it possible to reliably manipulate individual qubits. Previous methods could not achieve this level of control.

One of the main advantages of the new technology is its ability to limit crosstalk, which is interference between adjacent ions. The researchers were able to reduce the crosstalk to just 0.01 percent of its relative strength, making it one of the best in the quantum world. This means that the laser beam can target specific ions without affecting its neighbors.

The researchers focused on the barium ion, which has the right energy state to be used as the zero and one energy levels of qubits. Unlike other atom types, barium ions can be manipulated using visible green light rather than higher energy ultraviolet light. This allows researchers to take advantage of commercially available optical techniques that were previously unavailable at ultraviolet wavelengths.

The team developed a waveguide circuit that divides a single laser beam into 16 different light channels. Each channel is then sent to its own fibre-based modulator, which individually controls the intensity, frequency and phase of each laser beam. A series of optical lenses are then used to focus the laser beam to a narrow gap.

The researchers monitored each laser beam with precise camera sensors, confirming their precise focusing and control. This highly accurate and flexible control system sets a new standard in academia and industry.

The ultimate goal of this research is to build barium ion quantum processors, because ions are the same natural qubits that do not need to be manufactured. The focus now is on finding ways to effectively control these ions.

Source: Laser Network

相关推荐
  • Lameditech of South Korea was listed on the KOSDAQ exchange on the 17th

    On June 11, 2024, Korean laser medical equipment manufacturer Lameditech successfully completed its initial public offering and was listed on the KOSDAQ exchange on the 17th.Last month, its public offering price was fixed at 16000 Korean won. In this public offering, Lameditech issued a total of 1298000 shares, raising approximately 20.8 billion Korean won. Since Lameditech's debut on KOSDAQ, as o...

    2024-06-26
    查看翻译
  • The 2025 Munich Laser Exhibition has come to a successful conclusion

    Around 1,400 exhibitors and 44,000 visitors created “optimistic atmosphere”, says Messe München.Laser World of Photonics 2025 in Munich, Germany, came to a close on Friday, having set a new record for number of exhibitors and new innovations, said the organizer Messe München. Last week, 1,398 exhibitors from 41 countries presented the full spectrum of photonic technologies to around 44,000 visitor...

    06-30
    查看翻译
  • Leica Cine 1 laser TV with 4K display screen launched with a starting price of $8995

    Photography brand Leica has launched its first 4K movie and television. The Leica Cine 1 laser TV was announced a year later during the I FA 2022 period. This iconic photography brand is shifting some of its focus to projecting perfect images in our living room.featureThe Leica Cine 1 laser TV embodies Leica's philosophy in its camera design. Leica continues to provide precision optical engineerin...

    2023-10-19
    查看翻译
  • The University of Illinois combines the light emitted by multiple VCSEL into a single coherent mode

    Today, VCSELs (vertical cavity surface-emitting lasers) are used in everything from computer mice to face-scanning hardware in smart phones. They are renowned for their ability to integrate seamlessly into semiconductor chips, VCSELs are still considered to be an active field of research, and many researchers believe there are still important applications waiting to be discovered.The laboratory of...

    08-04
    查看翻译
  • Shanghai Institute of Optics and Fine Mechanics has made progress in the field of high-intensity laser cracking of high-density polyethylene

    Recently, a team from the National Key Laboratory of Ultra strong Laser Science and Technology at the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, collaborated with the Arctic University of Norway (UiT) to make progress in the efficient cracking of high-density polyethylene (HDPE) using strong laser molecular bond breaking technology. The research results were publ...

    06-16
    查看翻译