简体中文

Shanghai Optical Machinery Institute has made progress in high-efficiency optical parametric amplification technology

356
2024-07-11 11:25:23
查看翻译

Recently, a joint research team composed of Sun Meizhi, associate researcher of the High Power Laser Physics Joint Laboratory of the Chinese Academy of Sciences Shanghai Institute of Optics and Precision Mechanics, and Tu Xiaoniu, associate researcher of the Chinese Academy of Sciences Shanghai Institute of Silicate, proposed a new configuration of cross Fabry Perot intracavity optical parametric amplification (XOPA), and completed the experimental demonstration based on the front platform of the SG - Ⅱ 5PW laser device. The related achievements are titled "Optical Parametric Amplification in Crossed Fabry Perot Cells" and published in Laser Photonics Reviews.

Optical parametric amplification (OPA) and chirped pulse optical parametric amplification (OPCPA) are important technological routes for rapidly developing high-power laser systems, and are also the mainstream technological routes for future tens to hundreds of watt laser systems. The development of this field has put forward comprehensive requirements for laser amplification technology in terms of efficiency, energy, bandwidth, gain, beam quality, signal-to-noise ratio, and shaping ability.

The research team placed nonlinear crystals in a cross Fabry Perot cavity, constrained signal light and pump light to achieve multi-pass transmission and energy conversion, phased elimination of idle light, suppression of mixing three wave energy backflow, and thus achieving monotonic extraction of signal light and pump light energy. In the experiment, the YCOB crystal provided by the Shanghai Institute of Ceramics was used to achieve an output capability of 56.28% conversion efficiency of pump light from signal light in the 800nm wavelength band and a spectral width of 120nm; In addition, researchers designed unequal cavity lengths for dual Fabry Perot cavities, achieving high contrast amplification and shaping of chirped pulse signal light. This study indicates that the XOPA configuration has the ability to shape in the time, space, and frequency domains under the premise of high conversion efficiency, and is generally suitable for non collinear optical parametric amplification processes in all bands and nonlinear crystals, which is of great significance for improving the comprehensive performance of high-power laser systems.

Relevant work has been supported by the key projects of international scientific and technological innovation cooperation between the Ministry of Science and Technology, the National Natural Science Foundation of China, the Shanghai Natural Science Foundation, the Class A project of the Chinese Academy of Sciences strategic leading science and technology project and the Shanghai Sailing Plan project.

Figure 1 Schematic diagram of XOPA configuration

Figure 2: (a) Spectral evolution and (b) Theoretical simulation and experimental results of the 7-pass amplification process of XOPA

Source: Shanghai Institute of Optics and Precision Machinery

相关推荐
  • Deep Photon Network Platform, Empowering Any Functional Photon Integrated Circuit

    The widespread application in the fields of optical communication, computing, and sensing continues to drive the growing demand for high-performance integrated photonic components. Recently, Ali Najjar Amiri of Kochi University in Türkiye and other scholars proposed a highly scalable and highly flexible deep photonic network platform, which is used to realize optical systems on chip with arbi...

    2024-03-11
    查看翻译
  • Nanchang University has made progress in intelligent photoacoustic tomography imaging

    Photoacoustic tomography (PAT) is a novel hybrid medical imaging technique that enables precise imaging of biological tissue structures at different spatial scales. It has been widely used in various fields, including brain imaging, cancer detection, and cardiovascular disease diagnosis. However, due to limitations in data acquisition conditions, photoacoustic tomography systems typically can only...

    2024-08-13
    查看翻译
  • Micro optical technology based on metasurfaces has become a hot topic

    Introduction and application of a micro optical platform using metasurfacesMetasurfaces are artificial materials that excel in manipulating perception. Due to the fact that metasurfaces can reduce the size of lenses to one thousandth of traditional lenses, they have attracted great attention as optical components for miniaturization of next-generation virtual reality, augmented reality, and LiDAR ...

    2024-02-02
    查看翻译
  • The new generation of special optical fibers is suitable for the application of quantum technology

    Recently, physicists from the University of Bath in the UK have developed a new generation of specialized optical fibers to address the data transmission challenges of the future quantum computing era. This achievement is expected to promote the expansion of large-scale quantum networks. The research results were published in the latest issue of Applied Physics Letters Quantum.The highly anticipat...

    2024-08-02
    查看翻译
  • Composite two-dimensional materials for fiber lasers demonstrate the prospects of ultra fast optical applications

    The formation of dissipative solitons is influenced by various factors, such as spectral filtering effect and Kerr nonlinearity effect. This interaction leads to the possibility of mode locking on a large range of parameters, generating pulses with completely different types and evolution from conventional physical laws and optical properties, tolerating higher nonlinear effects, and effectively a...

    2023-09-21
    查看翻译