简体中文

Shanghai Optics and Machinery Institute has made new progress in evaluating the anti laser damage performance of thin film optical components using different laser damage testing protocols

822
2024-04-25 15:37:13
查看翻译

Recently, the research team of the High Power Laser Element Technology and Engineering Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made new progress in evaluating the laser damage resistance and damage mechanism of 532nm thin film polarizers using different laser damage test protocols. The related achievements were published in Optical Materials under the title "Nanosecond laser damage of 532? Nm thin film polarizers evaluated by different testing protocols".

Thin film polarizers can transmit P-polarized light and reflect S-polarized light, playing an important role in high-power laser systems. 1064 nm thin film polarizers are commonly used as optical switches and isolators in large laser systems, such as the National Ignition Facility (NIF) in the United States, OMEGA EP laser systems, Laser Megajoule, and SG II-UP devices. But with the development of high-power shortwave lasers, in order to solve the problem of limited resistance to laser damage in shortwave thin film optical components, polarization beam combining technology has been introduced. However, laser damage assessment of second and third harmonic polarizers is also crucial.

At present, laser damage testing protocols mainly include 1-on-1, S-on-1, Raster scan, R-on-1, and N-on-1. The 1-on-1 laser damage test is to apply a single pulse laser to each test point on the sample to study the initial damage morphology of optical components. The S-on-1 laser damage test is the process of irradiating multiple laser pulses at the same testing point to evaluate the cumulative effects and lifespan of optical components under long-term use. The Raster scan laser damage test scans a 1 cm2 area of the sample with the same energy density and can be used to detect discrete low-density defects in the film layer. When the testable area of the sample is limited, R-on-1 laser damage testing can be chosen to determine the damage threshold. This testing method uses progressively increasing laser energy density to irradiate the same test point. Reducing the number of steps in laser energy density can simplify R-on-1 testing to N-on-1 testing. The use of different laser damage testing protocols helps to identify the sources of damage in thin film optical components, identify potential mechanisms of thin film failure, and provide reference for improving the preparation process of thin film optical components.

The research team evaluated the laser damage resistance of 532 nm thin film polarizers under different polarization states using 1-on-1, S-on-1, and Raster scan laser damage testing protocols. The damage threshold of thin film polarizers prepared by electron beam evaporation under P-polarized light is significantly lower than that under S-polarized light. Under P-polarized light, the 1-on-1 and S-on-1 zero probability damage thresholds of the 532 nm polarizer are very close. Through damage morphology characterization, the damage of the sample under P-polarization is mainly caused by flat bottomed pits caused by structural defects at the interface between the substrate and the film layer, and shell shaped damage caused by sub surface damage of fused silica, both of which are very stable. Under S-polarized light, the damage threshold of S-on-1 is lower than that of 1-on-1, resulting in cumulative effects. The main damage morphology is incomplete jet nodule damage pits, and the damage caused by absorption defects is also manifested under multi pulse laser irradiation. The Raster scan zero damage threshold under two types of polarized light is the lowest, indicating that for thin film polarizers, defect density and film layer quality are the key limiting factors affecting their resistance to laser damage performance.
The research was supported by the foreign cooperation project of the Bureau of International Cooperation of the Chinese Academy of Sciences and the Scientific and Technological Research Council of Türkiye.

Figure 1.5Comparison of laser damage thresholds and typical damage morphology of 32 nm thin film polarizers

Source: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences

相关推荐
  • APE 2025 is about to take place

    The Asia Optoelectronic Expo 2025 (APE 2025) will be held from February 26 to 28, 2025 at the Marina Bay Sands Convention and Exhibition Centre in Singapore. It covers products such as information and communication, optics, lasers, infrared, sensing, display, quantum, and is a one-stop optoelectronic comprehensive platform for the optoelectronic industry and application fields; The exhibition focu...

    02-18
    查看翻译
  • Changguang Huaxin's revenue in the first half of the year was 142 million yuan, and its net profit decreased by 117.97% year-on-year

    On August 30th, Changguang Huaxin released its results for the first half of 2023. In the first half of this year, the company achieved a revenue of 142 million yuan, a year-on-year decrease of 43.23%; Net profit attributable to shareholders of the listed company -10.6374 million yuan, a year-on-year decrease of 117.97%.Due to macroeconomic factors such as a slowdown in economic growth, market con...

    2023-08-31
    查看翻译
  • Xi'an Institute of Optics and Fine Mechanics has made significant progress in the field of metasurface nonlinear photonics

    Recently, the Research Group of Nonlinear Photonics Technology and Application in the Transient Optics Research Room of Xi'an Institute of Optics and Mechanics, Chinese Academy of Sciences has made important progress in the field of super surface nonlinear photonics. Relevant research results were published in Laser&Photonics Reviews (IF=9.8), the top journal of the first district of the Chine...

    04-30
    查看翻译
  • Laser Photonics, the "dark horse" of laser cleaning, plans to build a new factory of nearly 50000 square meters in North America

    On July 2nd local time, Laser Photonics, the dark horse of laser cleaning, announced a major expansion plan: to build a modern new factory covering an area of 50000 square feet (approximately 4645.152 square meters) in Lake Mary, Florida, USA.This expansion marks a firm manifestation of Laser Photonics' confidence in the sustained growth of the North American and even global markets, and also sig...

    2024-07-04
    查看翻译
  • Cambridge University researchers use lasers to "heat and strike" 3D printed steel

    According to the University of Cambridge, researchers have developed a new method for 3D printing metal, which can help reduce costs and more effectively utilize resources. This method, developed by a research team led by the University of Cambridge, allows structural modifications to be "programmed" into metal alloys during 3D printing - fine-tuning their performance without the need for thousand...

    2023-11-03
    查看翻译