简体中文

TRUMPF high-power laser dynamic beam shaping technology creates opportunities for the electric vehicle industry

782
2024-07-01 14:39:36
查看翻译

It is reported that researchers from TRUMPF in Germany reported research on using dynamic beam shaping of high-power lasers to improve the productivity of hairpin stators, creating opportunities for the electric vehicle industry. Relevant research was published in "PhotonicsViews" under the title "Unlocking opportunities for the EV industry with beam shaping of high-power lasers".

The electric vehicle (EV) industry is experiencing unprecedented growth, driven by the global shift toward sustainable transportation. Laser welding has become an important technology in the industry, providing a convenient way to reduce production costs and expand manufacturing options for new battery and electric drive technologies. Although lasers have developed rapidly and power levels have reached 24kW or higher, how to effectively apply such high laser power in the welding process remains a challenge.

This article explores the gap between available laser power during hairpin welding and translating it into higher productivity. These limitations, especially in melt pool dynamics, prevent the full potential of high laser powers from being realized. To address this challenge, researchers have explored innovative beam shaping methods to overcome these limitations and utilize higher laser power during welding. Through detailed demonstrations, researchers show how new beam shaping techniques can be applied to make higher laser powers practical in welding, boosting productivity to unprecedented levels. This research not only helps optimize laser welding of electric vehicle components, but also opens the door to wider applications of advanced manufacturing technology.

superimposed laser beams

Welding the contacts of various batteries or electronic drives (mainly made of aluminum, copper and steel) requires a low-spatter process with low heat input and no pores in the weld. Additionally, the penetration depth and volume of molten material should be kept to a minimum. To meet these requirements, the process must be stabilized by controlling the shape and dynamics of the keyhole and surrounding molten pool.

In view of these characteristics, the researchers adopted a TRUMPF BrightLine Weld welding method to control the welding process by stabilizing the keyhole. This is achieved by superimposing two laser beams (a core beam and a ring fiber beam). This will have a stabilizing effect on the keyhole and surrounding molten pool. This innovative technology is used in a wide range of applications involving copper, aluminum and steel components, such as in the electric vehicle industry.

Figure 1 shows the beam profile of the superimposed laser beam from the TruDisk BrightLine Weld laser source in the focal plane. The sketch shows two beams superimposed and directed into the keyhole. The keyhole opening therefore has a conical shape compared to the case without the ring beam, which is the main effect for stabilization during machining. This phenomenon not only creates stable keyholes but also allows a significant increase in molten material near the surface. Both effects are critical to reducing spatter and void formation.

Figure 1 Effect of BrightLine Weld on the welding process. The laser beam is coupled to the inner fiber core and the coaxial ring fiber.

Table 1 Experimental configuration

Welding results

The laser-based hairpin welding process represents a significant challenge as it requires precise and fast connections while minimizing void formation, heat input and spatter. Preventing instabilities and achieving precise connections in hairpin stator designs requires a deep understanding of the process. At the same time, there is a need to maintain high process efficiency, minimize material loss, and optimize cycle times while maintaining structural integrity. Multimode lasers with 2-in-1 fiber guide function are mainly used for welding copper hairpins. The laser power is high and the quality requirements are strict. Compared to other high-power beam shaping technologies, TRUMPF's BrightLine welding technology (available for disk lasers and fiber lasers) is able to utilize the full laser power. Optics for fiber coupling are designed to support interchangeable fibers and integrate multiple beam outputs while maintaining beam quality integrity.

Figure 2 BrightLine Weld is an optical wedge used to adjust the power distribution between the core and ring fiber.

To address the challenges of short process times and minimizing spatter and porosity, BrightLine Weld technology was used to ensure a strong, conductive connection that significantly reduces porosity and spatter compared to processes using core fibers alone (see Figure 3). Dynamically adjusting the laser power split ratio between the core and ring fibers during the welding process provides a synergistic approach that combines fast processing times with reduced porosity generation. Throughout the welding process, the laser power alternates between the core and ring fibers to optimize the results. Although spatter is reduced, a small amount of spatter can still be observed under this process strategy.

Figure 3 Comparison of welding performance of the TruDisk 8000 multimode laser using single-core, static and dynamic BrightLine Weld processes. Corresponding spatter and pore images show improved speed and quality of the dynamic BrightLine mode process.

To address the challenges of short processing times and minimization of spatter and porosity, the application of BrightLine Weld technology ensures a robust conductive connection that significantly reduces porosity and spatter compared to processing using core fiber alone (see Figure 3). Dynamic adjustment of the laser power distribution ratio between the core and ring fibers during the welding process provides a synergistic approach that combines fast processing times with reduced pore generation. Throughout the welding process, the laser power alternates between the core and the ring fiber to optimize the welding effect. After adopting this process strategy, although the spatter was reduced, a small amount of spatter was still observed.

Source: Yangtze River Delta Laser Alliance

相关推荐
  • New laser technology unlocks deuterium release in aluminum layers

    In a recent study, quadrupole mass spectrometry was used to measure the number of deuterium atoms in the aluminum layer.A recent study led by the National Institute of Laser, Plasma, and Radiation Physics and Sasa Alexandra Yehia Alexe from the University of Bucharest explored the details of laser induced ablation and laser induced desorption techniques using a 1053 nm laser source. The study was ...

    2023-11-25
    查看翻译
  • Researchers treated MXene electrodes with lasers to improve lithium-ion battery performance

    Researchers at King Abdullah University of Science and Technology (KAUST) in Saudi Arabia have found that laser scribing or creating nanodots on battery electrodes can improve their storage capacity and stability. The method can be applied to an alternative electrode material called MXene.Lithium-ion batteries have multiple drawbacks in a wide range of applications, and researchers around ...

    2023-08-04
    查看翻译
  • 2D photoelectric neuron array can achieve broadband and low loss optical nonlinearity accessible to ambient light

    Light can calculate functions during propagation and interaction with structured materials, with fast speed and low energy consumption. The use of all optical neural networks for general computing requires an optical activation layer with nonlinear dependence on the input. However, existing optical nonlinear materials either have slow speeds or very weak nonlinearity at the level of natural light ...

    2024-03-20
    查看翻译
  • Application and Effect of Laser Cleaning

    Mold cleaning: Mold plays a very important role in industrial production. Currently, there are over a thousand mold related enterprises in China, driving the related output value to nearly 10 billion yuan. Among them, mold cleaning is an essential step in mold production. Laser can achieve contactless cleaning of molds, which is very safe for the surface of the mold, ensuring its accuracy, and can...

    2023-10-14
    查看翻译
  • The breakthrough of coherent two-photon lidar overcomes distance limitations

    Schematic diagram of experimental setupNew research has revealed advances in light detection and ranging technology, providing unparalleled sensitivity and accuracy in measuring the distance of distant objects.This study was published in the Physical Review Letters and was the result of a collaboration between Professor Yoon Ho Kim's team at POSTECH in South Korea and the Center for Quantum Scienc...

    2023-12-08
    查看翻译