简体中文

Researchers treated MXene electrodes with lasers to improve lithium-ion battery performance

693
2023-08-04 17:02:35
查看翻译

Researchers at King Abdullah University of Science and Technology (KAUST) in Saudi Arabia have found that laser scribing or creating nanodots on battery electrodes can improve their storage capacity and stability. The method can be applied to an alternative electrode material called MXene.

 

Lithium-ion batteries have multiple drawbacks in a wide range of applications, and researchers around the world are looking to improve the technology or find better alternatives.

 

MXene is a class of two-dimensional materials made of carbon and nitrogen atoms bonded to metals such as titanium or molybdenum. Despite being ceramic, these materials have good electrical conductivity and high capacitance, making them ideal for energy storage applications such as batteries.

Problems with using MXene

Lithium-ion batteries use graphite electrodes that contain layers of carbon atoms. When the battery is charged, lithium ions are stored between these layers, a process scientists call embedding.

 

MXene is more suitable as an electrode material than graphite because they provide additional storage space for lithium-ion embedding. The problem, however, is that the higher storage capacity is reduced after repeated charging and discharging cycles.

 

The KAUST researchers found that the reason for the decrease in capacity was a chemical change that led to the formation of molybdenum oxide within the MXene structure.

 

Improve performance with laser

The research team led by Husam N. Alshareef used a process called laser scribing, in which infrared laser pulses are used to create "nanodots" on molybdenum carbide on MXene electrodes. The nanodots are about 10 nanometers wide and are connected to the MXene layer by a carbon material, the press release said.

 

The laser-scribing material is used to make the anode and has been tested in more than 1,000 charge-discharge cycles in lithium-ion batteries. The researchers found that anodes with nanodots had four times the electrical storage capacity of anodes without them, and were also able to reach the theoretical maximum capacity of graphite. In addition, even after 1,000 cycles, there was no degradation in performance.

 

The researchers attribute the improved performance of the laser-scribing material to a variety of factors. The generation of nanodots provides additional storage space for the embedding of lithium ions, thus speeding up the charging process. It also reduces the oxygen content in the material, further preventing the formation of molybdenum oxide and reducing MXene electrode performance.

 

The connection between the nanodots and the layers further improves the material's electrical conductivity and stabilizes its structure. The researchers believe that the method could be used as a strategy to improve the performance of MXene, which also uses other metals.

 

While lithium prices have soared due to high demand, MXene can also be used with more abundant metal ions, such as sodium and potassium. It could also lead to the development of a new generation of rechargeable batteries.

 

"This provides a cost-effective and fast way to tune battery performance," added Dr. Zahra Bayhan. Student at King Abdullah University of Science and Technology.

 

MXene is a rapidly growing family of two-dimensional (2D) transition metal carbides/nitrides with promising applications in electronics and energy storage. In particular, Mo2CTx MXene, as an anode for lithium-ion batteries, has a higher capacity than other MXenes.

 

However, this enhanced capacity is accompanied by slow kinetics and poor cyclic stability. Studies have shown that the unstable cycling properties of Mo2CTx are attributable to partial oxidation to MoOx and resulting in structural degradation. A laser-induced Mo2CTx/Mo2C (LS-Mo2CTx) hybrid anode has been developed in which the Mo2C nanodots enhance REDOX kinetics and the laser-reduced oxygen content prevents oxidation-induced structural degradation.

 

At the same time, the strong connection between the laser-induced Mo2C nanodots and the Mo2CTx nanosheets enhances the conductivity and stabilizes the structure during the charge-discharge cycle. The prepared LS-Mo2CTx negative electrode exhibited enhanced capacity of 340 mAh g−1 versus 83 mAh g−1 (original) and improved cyclic stability (capacity retention of 106.2% versus 80.6% of the original) over 1000 cycles. Laser-induced synthesis methods highlight the potential of MXene-based hybrid materials for high-performance energy storage applications.

 

Source: Laser Network

相关推荐
  • Sivers Semiconductors, an optoelectronic semiconductor company, splits off its photonics business and goes public independently

    Recently, Sivers Semiconductors, a leading supplier of integrated chips and photonics modules for communication and sensing solutions, announced a significant strategic initiative:It will divest its subsidiary Sivers Photonics Ltd, which has signed a non binding letter of intent (LOI) with byNordic Acquisition Corporation and plans to achieve independent listing through a merger. This move aims ...

    2024-08-26
    查看翻译
  • Laser chip manufacturer Shijia Photon will make a profit of 65 million yuan in 2024

    Shijia Photon disclosed its 2024 annual performance forecast on the evening of January 17th, expecting to achieve a revenue of 1.074 billion yuan in 2024, a year-on-year increase of 42.36%; Net profit attributable to the parent company was 65 million yuan, with a loss of 47.55 million yuan in the same period last year; Deducting non net profit is expected to be 48.1 million yuan, with a loss of 66...

    01-21
    查看翻译
  • Research progress on aerospace materials and anti ablation coatings: a review

    India B R. Dr. Jalandal Ambedkar National Institute of Technology and the Indian Institute of Technology reviewed and reported on the research progress of aerospace materials and anti ablation coatings. The related paper was published in Optics&Laser Technology under the title "Progress in aerospace materials and ablation resistant coatings: A focused review".a key:1. A comprehensive overview ...

    2024-11-21
    查看翻译
  • Historic Moment! The 100th TruLaser Cell Series 3D Five-Axis Laser Cutting Machine Successfully Rolls Off the Production Line in China

    Driven by the global trend of lightweighting in new energy vehicles (NEVs), TRUMPF has reached a significant milestone in Taicang, Jiangsu—the successful rollout of the 100th TruLaser Cell series 3D five-axis laser cutting machine. This achievement is more than just a numerical breakthrough; it symbolizes the deep integration of German technology with Chinese manufacturing and underscores TRUMPF's...

    03-14
    查看翻译
  • HGTECH Laser's New Product Debuts at the 2025 Munich Shanghai Light Expo

    New Product for Wafer Testing Probe Card Manufacturing Equipment Project This project adopts vision guided laser precision cutting to separate the probe from the crystal disk, and then generate a product mapping image for use in the next process. When picking up the probe, multi-point reference surface fitting technology is used to achieve non-contact probe suction and avoid force deformation. A...

    03-07
    查看翻译