简体中文

New laser technology can achieve more efficient facial recognition

381
2024-06-24 14:15:46
查看翻译

Recently, the latest research report from FLEET, an interdisciplinary research team in Australia, revealed a significant leap in laser technology, achieving unprecedented levels of spectral purity.

Spectral purity, which refers to the degree of matching of a single light frequency (or color) generated by a laser, is an important indicator for measuring laser performance. By using a scanning Fabry Planck interferometer, researchers accurately measured the spectral purity of the laser and found that its linewidth was extremely narrow, only 56 MHz or 0.24 μ eV, which was ten times smaller than previous records.

This milestone progress enables polarized lasers to compete with industry-leading VCsel technology, especially in applications such as facial recognition and augmented reality. Importantly, polarized lasers not only have excellent performance, but also are more energy-efficient. Their working power is lower, thanks to their unique boson condensation state, in which light generation does not require the massive energy required by traditional lasers.

This feature has enormous potential for application in the field of biometrics, especially in facial recognition. Although vertical cavity surface emitting lasers (VCSELs) are widely used in facial recognition devices due to their high efficiency and reliability, polarized lasers provide a more energy-efficient option. Without sacrificing performance, they can make facial recognition devices more energy-efficient, which helps promote the sustainable development of related technologies.

In addition, the research report also reveals another major advantage of polarized exciton lasers: they can maintain high spectral purity even when overlapping with poorly organized particles. This used to lead to severe noise and performance degradation, but research teams have found that as long as polarons are placed in enclosed spaces, the noise generated by these particles can be minimized. This characteristic makes polarized exciton lasers more practical in various biometric systems that require reliable operation.

It is worth mentioning that the narrow linewidth of polaron lasers endows them with extremely long coherence time. Coherence time refers to the time it takes for a laser to maintain high-quality light, which is crucial for fast and continuous execution of thousands of operations, especially in advanced applications such as quantum computing. The coherence time of polaron lasers is at least 5.7 nanoseconds, which may seem brief but is sufficient to meet the needs of these advanced applications.

In summary, the research results of the FLEET team not only demonstrate the tremendous progress of laser technology, but also bring new energy-saving and efficient choices for biometric fields such as facial recognition. With the continuous development and improvement of technology, we have reason to believe that polarized lasers will lead a revolution in facial recognition technology in the future.

Source: OFweek

相关推荐
  • Sill Optics launches F-Theta lenses for photovoltaic applications

    The energy transformation has brought us global challenges. In this regard, renewable energy sources such as photovoltaic are crucial. The key to improving the efficiency of photovoltaic power generation is to improve the manufacturing process of solar cells. Laser material processing is used to weld individual batteries into modules, dope selective emitters, and remove very thin antireflective an...

    2023-11-22
    查看翻译
  • Beyond Limits: The Amazing Power of Water in Laser Development

    Water helps to generate ultra continuous white lasers with an extremely wide wavelength range.Researchers have made significant progress in creating ultra wideband white laser sources, which have a wide wavelength range from ultraviolet to far-infrared. These advanced lasers are used in various fields, including imaging, femtosecond chemistry, telecommunications, laser spectroscopy, sensing, and u...

    2024-02-26
    查看翻译
  • The team led by Gao Chunqing and Fu Shiyao from Beijing University of Technology has made significant breakthroughs in the study of photon angular momentum regulation

    Recently, a team led by Gao Chunqing and Fu Shiyao from the School of Optoelectronics at Beijing University of Technology combined optical spatial coordinate transformation with photon spin Hall effect to construct a photon angular momentum filter for the first time internationally, achieving on-demand regulation of photon spin angular momentum and orbital angular momentum.The related achievements...

    2023-10-20
    查看翻译
  • The visual LiDAR fusion calibration board improves the detection accuracy of the vehicle navigation system and does not need to be adjusted before sailing

    At present, the navigation system has become an important equipment on ships, aircraft, missiles, automobiles and other navigational vehicles. Laser Doppler radar has become an important development direction in the field of velocity measurement technology because of its high accuracy, good spatial resolution and fast dynamic response. The application of the three-beam Doppler Lidar in the...

    2023-08-23
    查看翻译
  • Osram's new laser headlights "Yutianba" are unveiled

    Recently, OSRAM, a well-known global automotive lighting brand, announced the launch of its modified new laser headlights - the Yutianba laser headlights. Laser headlights were once regarded by many car companies as the "successor" of LED headlights, and German century old automotive lighting expert Osram is precisely the pioneer of laser light sources for automotive headlights. Since the 2014 BMW...

    2024-05-06
    查看翻译