简体中文

Real time measurement of femtosecond dynamics of relativistic intense laser driven ultra-hot electron beams

798
2024-04-30 15:43:35
查看翻译

In the interaction between ultra short and ultra strong laser and matter, electrons with short pulse width and high energy are generated, commonly referred to as "hot electrons". The generation and transport of hot electrons is one of the important fundamental issues in high-energy density physics of lasers. Superhot electrons can excite a wide range of ultrafast electromagnetic radiation, as well as drive ion acceleration and rapid heating of matter, serving as energy carriers in the "fast fire" process of inertial confinement fusion. The properties of various secondary radiation and particle sources, plasma heating and energy deposition processes are closely related to the temporal, spatial, and energy characteristics, as well as the evolution dynamics of hot electrons.

After years of research, people have gained a clear understanding of the energy and spatial characteristics of superheat electrons. However, due to the lack of suitable high-resolution measurement methods, the diagnosis of the time structure and dynamic processes of superheat electron beams still faces challenges.

Liao Guoqian, a distinguished researcher of the Institute of Physics of the Chinese Academy of Sciences/Key Laboratory of Photophysics of the National Research Center for Condensed Matter Physics in Beijing, Li Yutong, a researcher, and Zhang Jie, an academician of the CAS Member, have explored for many years a new way to generate high power terahertz radiation from the interaction between ultra intense lasers and solid targets, proposed a terahertz generation model based on the coherent transition radiation of ultra hot electron beams, and developed a single shot ultra wideband terahertz detection technology based on non collinear autocorrelation.

Based on the above achievements, researchers have recently proposed a new method for diagnosing superheat electron beams using terahertz radiation. Using a self-developed high time resolution single shot terahertz autocorrelation instrument, in-situ and real-time measurements of the time-domain structure and dynamics of superheat electron beams during the interaction between ultra strong lasers and thin film targets have been achieved.

This study theoretically constructs a mapping relationship between terahertz radiation properties and the spatiotemporal characteristics of superheat electron beams, and provides a quantitative relationship between terahertz pulse width and parameters such as electron beam pulse width, beam spot size, and emission angle. This study accurately characterized the pulse width of a few tens of femtoseconds level hot electron beam in the laser solid target interaction. It was found that the electron beam accelerated by the ultra strong laser has a pulse width similar to that of the driving laser during generation. During transmission, the longitudinal time width and transverse spatial size gradually widen due to velocity dispersion and angular divergence; We directly observed the dynamics of hot electron backflow caused by secondary acceleration of laser pulses and target surface sheath field. It was found that when a high contrast laser interacts with a thin film target, the electron beam bounces back and forth between the front and back surface sheath fields of the target, with a duration of up to 100 femtoseconds. These results demonstrate single shot, non-destructive, in situ, and high temporal resolution methods for characterizing hot electrons, which contribute to understanding and optimizing the spatiotemporal characteristics of ultrafast radiation and particle sources based on hot electrons, and developing related applications.

Diagnosis of pulse width of superheat electron beam using terahertz coherent transition radiation

Diagnosis of Superhot Electron Reflux Dynamics Based on Multi cycle Terahertz Pulses

The related achievements are titled Femtosecond dynamics of fast electron pulses in related laser oil interactions and published in the Physical Review Letters. The research work was supported by the National Natural Science Foundation of China, the Ministry of Science and Technology and the Chinese Academy of Sciences.

Paper link: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.132.155001

Source: Institute of Physics

相关推荐
  • Researchers have created an X Lidar lidar to help airports operate during volcanic eruptions

    Engineer and inventor Ezequiel Pawelko is one of the creators of X Lidar, a laser technology that can detect volcanic ash in the atmosphere, draw safe flight paths, and maintain airport operations during volcanic eruptions. Nowadays, he is engaged in other applications such as detecting space debris, monitoring natural resources and fisheries, preventing fires, and drawing radiation and wind maps ...

    2023-12-27
    查看翻译
  • The rare decay of the Higgs boson may point to physics beyond the standard model

    Particle physicists have detected for the first time a new decay of the Higgs boson, revealing subtle differences predicted by the standard model and potentially pointing to new physics beyond it. The research results are published in the journal Physical Review Letters.The theoretically predicted Higgs boson since the 1960s was finally discovered in the European CERN laboratory in 2012. As a quan...

    2024-01-26
    查看翻译
  • Focusing on Lithuanian solid-state and fiber laser manufacturer EKSPLA

    In this interview, Dr. Antonio Castelo, EPIC Biomedical and Laser Technology Manager, had a conversation with Aldas Juronis, CEO of EKSPLA, a Lithuanian innovative solid-state and fiber laser manufacturer.What is the background of your appointment as the CEO of EKSPLA?In 1994, I graduated from Kaonas University of Technology in Lithuania with a Bachelor's degree in Radio Electronic Engineering. At...

    2023-11-07
    查看翻译
  • Lorenz competes in the LiDAR market with MEMS galvanometer technology

    At the recently concluded 2024 International Consumer Electronics Show (CES), automotive related technologies and solutions shone brightly, and a group of Chinese LiDAR suppliers competed on the same stage.The technologically advanced products, systematic solutions, continuously increasing delivery and market retention have to some extent proven that in the context of the development of automotive...

    2024-04-13
    查看翻译
  • HP100A-50KW-GD laser power detector for measuring extremely high power laser beams

    The HP100A-50KW-GD laser power detector is mainly designed for manufacturers of high-power lasers and laser systems, factories that use high-power lasers to cut thick metal parts, and military applications.The HP100A-50KW-GD adopts a gold reflector cone and a reduced back reflection geometry, which can capture 97% of incident light and process up to 50 kW of continuous laser power. The back reflec...

    2024-01-16
    查看翻译