简体中文

Researchers have created an X Lidar lidar to help airports operate during volcanic eruptions

814
2023-12-27 14:06:48
查看翻译

Engineer and inventor Ezequiel Pawelko is one of the creators of X Lidar, a laser technology that can detect volcanic ash in the atmosphere, draw safe flight paths, and maintain airport operations during volcanic eruptions. Nowadays, he is engaged in other applications such as detecting space debris, monitoring natural resources and fisheries, preventing fires, and drawing radiation and wind maps for renewable energy.

Apart from fog, thunderstorms, or fire smoke, the most dangerous atmospheric phenomenon in airplanes is volcanic ash, as it has the ability to erode and damage turbines, engines, and mechanical components of the fuselage. So much so that the aviation authorities suggest suspending flights and closing airports. The problem is that volcanic ash is too small to be detected by aviation or meteorological electromagnetic radar.

In 2010, the eruption of the Eyjafjallaj ö kull volcano in Iceland affected 75% of European aviation operations, canceling over 10000 flights within a week and resulting in losses of millions of dollars. One year later, in 2011, despite the Puyehue volcanic activity in Chile, the airport in Barriloche City was still operational, and due to the installation of the country's first developed LiDAR, the volcano was less than 100 kilometers away.

The plan is led by Ezequiel Pawelko, a telecommunications engineer and researcher at the National Defense Science and Technology Research Center. In 2019, Ezequiel Pawelko and Nadia Barreiro created Aerolidar, which can identify the presence and distribution of ash, track safe routes, and allow commercial air activities within national territory. Now, Pawelko is looking for other applications of this technology, which is currently in use at different airports in the country and around the world, and will soon be used on airplanes.

Source: Laser Net

相关推荐
  • British scientists pioneered groundbreaking laser tools to help discover exoplanets

    Physicists from the University of Heriot and the University of Cambridge have developed an innovative laser system called Astrocomb, which can significantly improve the detection of exoplanets. This advanced tool can accurately measure the spectra emitted by nearby stars, which fluctuate due to the gravitational influence of orbiting planets. It is expected that this technology will enhance resear...

    2024-04-02
    查看翻译
  • NASA will demonstrate laser communications from the space station

    NASA's ILLUMA-T payload communicates with the LCRD via laser signals.NASA uses the International Space Station, a spacecraft the size of a football field orbiting the Earth, to learn more about living and working in space. For more than 20 years, the space station has provided a unique platform for investigation and research in the fields of biology, technology, agriculture and more. It is home to...

    2023-09-02
    查看翻译
  • Multinational research team achieves breakthrough in diamond Raman laser oscillator

    Recently, the team led by Professor Lv Zhiwei and Professor Bai Zhenxu from Hebei University of Technology, in collaboration with Professor Richard Mildren from Macquarie University in Australia and Professor Takashige Omatsu from Chiba University in Japan, successfully achieved direct output of Raman vortex optical rotation with large wavelength extension in a diamond Raman laser oscillator. This...

    02-27
    查看翻译
  • The research results on the implementation of micro active vortex laser using laser nanoprinting technology are published in Nano Letters

    IntroductionVortex beams carrying orbital angular momentum (OAM) are widely used for high-throughput optical information multiplexing, and achieving on chip, small-scale vortex lasers is crucial for promoting the industrial implementation of vortex light reuse technology. Recently, Gu Min, an academician of Shanghai University of Technology, and Fang Xinyuan, an associate professor of Shanghai Uni...

    2023-10-16
    查看翻译
  • Automated methods for background estimation in laser spectroscopy

    A new automated method for spectral background estimation in laser spectroscopy ensures the accuracy of quantitative analysis with minimal human intervention.When using laser-induced breakdown spectroscopy in spectral analysis, scientists may encounter various obstacles. The most common challenge faced by scientists when conducting elemental analysis is to optimize the interaction between the lase...

    2023-11-24
    查看翻译