简体中文

New method doubles and accelerates thermal tuning of optical chips, supporting two current and voltage regulation methods

475
2024-04-02 14:36:03
查看翻译

Silicon based quantum chip technology is one of the hot research directions in the field of integrated photonics. Thanks to compatibility with CMOS technology and silicon material characteristics, silicon-based integrated optical chips and devices have many advantages such as low cost, small size, low power consumption, and high integration, providing an ideal platform for large-scale optical computing, optical quantum computing, and information processing applications.

The Mach Zehnder interferometer (MZI) is a core device for high-precision programming operations in optical (quantum) computing chips. By combining and modulating the MZI and phase shifter, the key step of quantum state encoding can be completed, improving the information processing capability of optical quantum chips.

Specifically, the experimenter adjusts the phase difference of the transmitted light in the upper and lower arms of the MZI by applying different currents and voltages, thereby changing the intensity and phase of the output light, resulting in interference and achieving control of the optical path. To maximize the accuracy of chip calculations, it is necessary to accurately find the functional relationship between the phase shifter and the driving voltage and current. With the sharp increase in the number of connected MZIs on the chip, the combination of current, voltage, and phase shifter results in an exponential increase. Therefore, it is particularly important to find an efficient and feedback based current and voltage regulation method for phase shifters.

Thermal tuning test plan for MZI silicon polishing chip
The Sizhen programmable multi-channel current (voltage) source has a compact size and can achieve up to 64 channels of high-precision constant current and constant voltage output. The experimenter connected the current and voltage source to the PCB download adapter board through a shielded cable via SCSI, which can simultaneously apply appropriate voltage or current to 64 channels and adjust to obtain the desired optical signal. The loading values of each channel are initially random, and the experimenter finds the appropriate value through each iteration of the feedback function to achieve fast switching of current and voltage setting values. Among them, the maximum single channel current value of the series products can reach 100mA.

This solution supports two current and voltage regulation methods:
1. Manual adjustment: Directly input indicators through upper computer software
2. Python instruction automation control: The current and voltage source is programmed in Python to transmit control signals to the chip, then the PD value is detected and fed back to the current and voltage source through computer coding to change the control signal until the desired result is obtained.

Figure (a) shows a chip structure that can achieve any unitary transformation, and Figure (b) shows a chip structure that can achieve any two bit quantum operation, integrating a large number of MZI devices on the chip

Thermal tuning testing scheme for MZI silicon zenith computing chip

Source: Guangxing Tianxia

相关推荐
  • Diamond Light Source and NPL reach a new five-year agreement

    Recently, two leading UK scientific institutions, Diamond Light Source and National Physical Laboratory (NPL), have reached a new five-year agreement to promote joint collaborative efforts.The agreement was approved by signing a Memorandum of Understanding (MoU), which will bring these two institutions together.Diamond Light Source is a national synchrotron facility in the UK known for generating ...

    2024-04-25
    查看翻译
  • Accelerating electrons by emitting laser light into a nanophotonic cavity

    The laser driven particle accelerator on silicon chips was created by two independent research groups. With further improvements, this dielectric laser accelerator can be used in medicine and industry, and even in high-energy particle physics experiments.Accelerating electrons to high energy is usually accomplished over long distances in large and expensive facilities. For example, the electron ac...

    2023-10-28
    查看翻译
  • The semiconductor laser market is expected to reach $5.3 billion by 2029

    Nowadays, laser technology is widely used in various traditional and emerging fields, including optical communication, material processing, consumer equipment, automotive sensing and lighting, display technology, medical applications for treatment and diagnosis, as well as aerospace and defense.Especially in the semiconductor laser market, it is expected to grow from $3.1 billion in 2023 to $5.2 b...

    2024-12-03
    查看翻译
  • Scientists have used 3D integration technology to bring ultra-low noise lasers without isolators to silicon photonics

    After electronic integrated circuits (Eics), silicon (Si) photonics technology is expected to achieve photonic integrated circuits (PIC) with high density, advanced functions and portability. Although various silicon photonics fountifiers are rapidly developing PIC capabilities to enable mass production of modulators, photodetectors and, more recently, lasers, silicon PIC has not yet met the strin...

    2023-08-04
    查看翻译
  • TRUMPF will launch a fully automatic laser drilling machine for interconnected manufacturing equipped with a 6-kilowatt fiber laser

    TRUMPF introduced its TruMatic 5000 manufacturing unit and new SheetMaster automatic loading and unloading device technology at the 2023 Blechexpo Metal Plate Processing Exhibition in Stuttgart, Germany.Users of the new system will benefit from fully automatic laser cutting, punching, and forming capabilities. The new SheetMaster device can achieve fully automated material flow within the manufact...

    2023-10-23
    查看翻译