简体中文

Researchers have discovered a new method to improve the resolution of laser processing

350
2024-03-28 13:52:54
查看翻译

Customized laser beams focused through transparent glass can generate a small dot inside the material. Researchers from Northeastern University have reported a method of using this small spot to improve laser material processing and increase processing resolution.


Their research results are published in the journal Optics Letters.

Laser processing, like drilling and cutting, is crucial in industries such as automobiles, semiconductors, and pharmaceuticals. The pulse width of an ultra short pulse laser source ranges from picoseconds to femtoseconds, and can be accurately processed in the range of micrometers to tens of micrometers. But recent progress requires smaller scales, below 100 nanometers, which is difficult to achieve with existing methods.

Researchers focus on laser beams with radial polarization, known as vector beams. The beam generates a longitudinal electric field at the focal point, resulting in a smaller spot than traditional beams.

Scientists have determined that this process has great potential in laser processing. However, one drawback is that due to the light refraction at the air material interface, the field weakens inside the material, thereby limiting its use.

"We overcame this by using oil immersion lenses to laser process glass substrates," exclaimed Yuichi Kozawa, Associate Professor at the Institute of Advanced Materials Multidisciplinary Research at Northeastern University and co-author of the paper. "Because the refractive indices of oil immersed and glass are almost the same, the light passing through them will not bend."

Further research on the behavior of radially polarized beams under circular focusing indicates that the longitudinal field is greatly enhanced. This enhancement is due to total reflection occurring at high convergence angles on the back between glass and air. By using a circularly polarized beam of light, Kozawa and his colleagues created a small focal point.

From there, they applied this method to processing glass surfaces with ultra short pulse laser beams. A single shot of the converted pulse on the back of the glass substrate will produce a hole with a diameter of 67 nanometers, approximately 1/16 of the wavelength of the laser beam.

"This breakthrough makes it possible to use enhanced longitudinal electric fields for direct material processing with higher accuracy," Kozawa added. "It provides a simple method to achieve processing scales below 100 nanometers and opens up new possibilities for laser nanoprocessing in various industries and scientific fields."

Source: Laser Net

相关推荐
  • Laser link between European Space Agency containers and space

    The latest expansion of the European Space Agency's laboratory is essentially portable: this European Space Agency's mobile optical ground station is housed in a standard container and can be transported throughout Europe as needed for laser based optical communication with satellites - including NASA's Psyche mission, in space millions of kilometers away.The station has officially become a part o...

    2024-02-12
    查看翻译
  • The research team developed additive manufacturing (AM) technology based on hydrogel injection, and related research was published on Nano Letters

    It is reported that the research team of California Institute of Technology has developed an additive manufacturing (AM) technology based on hydrogel injection, which uses two-photon lithography technology to produce 3D metal with a characteristic resolution of about 100 nm.The relevant research is published in the journal Nano Letters, titled 'Suppressed Size Effect in Nanopillars with Hierarchy ...

    2023-09-25
    查看翻译
  • Scientists have successfully miniaturized erbium-based erbium lasers on silicon nitride photonic chips

    Scientists from the Federal Institute of Technology in Lausanne (EPFL) have successfully miniaturized a powerful erbium-based erbium laser on silicon nitride photonic chips. Due to the large volume and difficulty in shrinking of typical erbium-based fiber lasers, this breakthrough is expected to make significant progress in optical communication and sensing technology.Since the 1960s, lasers have ...

    2024-06-13
    查看翻译
  • Probe organization of photoacoustic devices using low-cost laser diodes

    Photoacoustic technology provides a non-invasive method for detecting biological tissues, but its clinical application is limited, partly due to the large volume and high cost of laser sources. A compact PA sensing instrument powered by laser diodes for biomedical tissue diagnosis can provide clinical doctors with a practical and effective tool for evaluating breast diseases.By providing a cost-ef...

    2024-03-06
    查看翻译
  • Dark Solitons Discovered in Ring Semiconductor Lasers

    Dark solitons - the extinction region in a bright background - spontaneously form in a ring semiconductor laser. Observations conducted by an international research group may lead to improvements in molecular spectroscopy and integrated optoelectronics.Frequency comb - a pulse laser that outputs light at equidistant frequencies - is one of the most important achievements in the history of laser ph...

    2024-02-01
    查看翻译