简体中文

Emerging laser technologies for precise manufacturing of multifunctional nanomaterials and nanostructures

339
2024-08-05 15:08:57
查看翻译

The use of photons to directly or indirectly drive chemical reactions has fundamentally changed the field of nanomaterial synthesis, leading to the emergence of new sustainable laser chemistry methods for manufacturing micro - and nanostructures. The incident laser radiation triggers complex interactions between chemical and physical processes at the interface between solid surfaces and liquid or gas environments.

In such a multi parameter system, it is impossible to precisely control the resulting nanostructures without a deep understanding of the chemical and physical processes influenced by the environment.

This review aims to provide a detailed and systematic exposition of these processes, examining mature and emerging laser technologies used for producing advanced nanostructures and nanomaterials. Both gases and liquids are considered potential reaction environments that affect the manufacturing process, and subtractive and additive manufacturing methods are also analyzed. Finally, the prospects and emerging applications of such technologies were also discussed.

Through an overview of the history and latest achievements in the field of laser chemistry, researchers have concluded that the development of laser technology, green chemistry methods, and nanophotonics has led to a paradigm shift in modern nanomanufacturing. By changing parameters such as laser beam intensity, environmental composition, and absorption spectra, people can switch between additive manufacturing and subtractive manufacturing or between chemical modification and morphological surface modification under almost the same processing arrangement.

Laser radiation triggers these processes in two different ways:
1) Photochemical action: Photons excite molecular oscillations or electrons in the environment, or generate electron hole pairs on the surface. In this case, the laser wavelength corresponds to certain absorption bands of the material. Therefore, at a time scale greater than that required for chemical reactions, the material will be displaced from thermal equilibrium. Chemical reactions are activated by free charge carriers, or the threshold is lowered due to this excitation.

2) Thermal induction effect: The absorbed laser radiation raises the interface temperature and becomes a local heat source. In this case, thermal equilibrium can be assumed, and chemical reactions are activated by the increased temperature at the interface.

Both of these physical pathways can save a significant amount of energy during the production process. The photochemical method can avoid the Maxwell Boltzmann energy distribution of reactants, in which case only the high-energy "tail" can overcome the reaction barrier, and the rest only dissipate energy. The efficiency of laser-induced thermochemical patterning is higher than that of traditional chemical reactors because light is only localized in the area that needs to be processed. The ultimate goal of this direction is to achieve high control over reaction product parameters, high spatial accuracy, low toxicity, and cost-effectiveness, making laser chemistry methods suitable for industrial scale applications in fields such as flexible electronics, planar optics, sensing, catalysis, supercapacitors, and solar energy.



Source: Yangtze River Delta Laser Alliance

相关推荐
  • NSF funding for the world leading EP-OPAL laser multi mechanism design in Rochester

    The National Science Foundation (NSF) of the United States has awarded the University of Rochester nearly $18 million for three years to design and prototype key technologies for EP-OPAL, a new facility dedicated to studying the interaction between ultra-high intensity lasers and matter.After the design project is completed, the facility can be built at the Laser Energy Laboratory (LLE). This fund...

    2023-09-26
    查看翻译
  • The globalization of three-color laser technology will be further accelerated

    Recently, the IFA2023 Consumer Electronics Show in Berlin, Germany opened, Hisense exhibited "three-color laser projection family bucket" attracted the attention of media and tourists from all over the world.Since Hisense's young fashion brand Vidda launched a series of three-color laser projection, its accumulation based on three-color laser technology is competing globally and has become a...

    2023-09-04
    查看翻译
  • Laser giant nLIGHT's preliminary performance forecast for the fourth quarter of 2024

    Recently, nLIGHT, a manufacturer of high-power semiconductors and fiber lasers, released its preliminary performance forecast for the fourth quarter of 2024.According to disclosed information, nLIGHT expects its revenue for the fourth quarter of 2024 to be between $46 million and $48 million, lower than the estimated range of $49 million to $54 million when it released its third quarter results on...

    01-16
    查看翻译
  • On demand ultra short laser flash: controllable optical pulse pairs from a single fiber laser

    Set up a dual comb fiber laser oscillator, external pulse combination, and real-time detection.In innovative methods for controlling ultra short laser flashes, researchers from Bayreuth University and Konstanz University are using soliton physics and two pulse combs in a single laser. This method has the potential to greatly accelerate and simplify laser applications.Traditionally, the pulse inter...

    2024-01-12
    查看翻译
  • Researchers have developed a quantum cascade laser in Italy

    The first all-Italian quantum cascade laser was born at the National Research Center in Pisa. The protagonists of this milestone are two researchers from the Nanoscience Institute, Lucia Sorba and Miriam Serena Vitiello, who together with their research team designed and developed this innovative device.In fact, quantum cascade lasers have unique potential for detecting gases and other molecules, ...

    2023-08-04
    查看翻译